我有一个数据集

category
cat a
cat b
cat a

我希望能够返回(显示唯一值和频率)

category   freq 
cat a       2
cat b       1

当前回答

下面的代码为名为“smaller_dat1”的数据帧中的“Total_score”列中的各种值创建频率表,然后返回值“300”在该列中出现的次数。

valuec = smaller_dat1.Total_score.value_counts()
valuec.loc[300]

其他回答

如果你的DataFrame有相同类型的值,你也可以在numpy.unique()中设置return_counts=True。

index, counts= np.unique(df.values,return_counts=True)

如果您的值是整数,则Np.bincount()可能更快。

我相信这应该工作的任何DataFrame列列表。

def column_list(x):
    column_list_df = []
    for col_name in x.columns:
        y = col_name, len(x[col_name].unique())
        column_list_df.append(y)
return pd.DataFrame(column_list_df)

column_list_df.rename(columns={0: "Feature", 1: "Value_count"})

函数“column_list”检查列名,然后检查每个列值的唯一性。

正如大家所说,更快的解决方法是:

df.column_to_analyze.value_counts()

但是如果你想在你的数据框架中使用输出,使用这个模式:

df input:

category
cat a
cat b
cat a

df output: 

category   counts
cat a        2
cat b        1 
cat a        2

你可以这样做:

df['counts'] = df.category.map(df.category.value_counts())
df 

在0.18.1中,groupby和count没有给出唯一值的频率:

>>> df
   a
0  a
1  b
2  s
3  s
4  b
5  a
6  b

>>> df.groupby('a').count()
Empty DataFrame
Columns: []
Index: [a, b, s]

然而,唯一的值和它们的频率很容易通过大小来确定:

>>> df.groupby('a').size()
a
a    2
b    3
s    2

使用df.a.value_counts(),默认情况下返回排序后的值(降序排列,即最大值在前)。

如果你想应用到所有列,你可以使用:

df.apply(pd.value_counts)

这将对每一列应用一个基于列的聚合函数(在本例中为value_counts)。