在我多年的编程生涯中,我经常使用递归来解决简单的问题,但我完全意识到,有时由于内存/速度问题,您需要迭代。
所以,在很久以前的某个时候,我去尝试寻找是否存在任何“模式”或教科书上的方法来将常见的递归方法转换为迭代,但一无所获。至少我想不起有什么帮助。
有一般的规则吗? 有“模式”吗?
在我多年的编程生涯中,我经常使用递归来解决简单的问题,但我完全意识到,有时由于内存/速度问题,您需要迭代。
所以,在很久以前的某个时候,我去尝试寻找是否存在任何“模式”或教科书上的方法来将常见的递归方法转换为迭代,但一无所获。至少我想不起有什么帮助。
有一般的规则吗? 有“模式”吗?
当前回答
通常,通过将通常传递给递归函数的参数推入堆栈,我将递归算法替换为迭代算法。事实上,您正在用自己的程序堆栈替换程序堆栈。
var stack = [];
stack.push(firstObject);
// while not empty
while (stack.length) {
// Pop off end of stack.
obj = stack.pop();
// Do stuff.
// Push other objects on the stack as needed.
...
}
注意:如果你在里面有多个递归调用,并且你想要保留调用的顺序,你必须以相反的顺序将它们添加到堆栈:
foo(first);
foo(second);
必须由
stack.push(second);
stack.push(first);
编辑:文章堆栈和递归消除(或文章备份链接)详细介绍了这个主题。
其他回答
一般来说,通过简单地使用存储变量,可以将递归模拟为迭代。注意,递归和迭代通常是等价的;其中一种几乎总是可以转化为另一种。尾递归函数很容易转化为迭代函数。只需要将累加器变量设置为局部变量,并迭代而不是递归。下面是c++中的一个例子(如果不使用默认参数的话):
// tail-recursive
int factorial (int n, int acc = 1)
{
if (n == 1)
return acc;
else
return factorial(n - 1, acc * n);
}
// iterative
int factorial (int n)
{
int acc = 1;
for (; n > 1; --n)
acc *= n;
return acc;
}
据我所知,我可能在代码中犯了一个错误,但想法是存在的。
一个系统如何接受任何递归函数并使用堆栈执行它的粗略描述:
这是为了在没有细节的情况下展示想法。考虑这个函数,它将打印出图的节点:
function show(node)
0. if isleaf(node):
1. print node.name
2. else:
3. show(node.left)
4. show(node)
5. show(node.right)
例如图表: A - B > C - > show(A)将打印B, A, C
函数调用意味着保存本地状态和延续点,以便返回,然后跳转到要调用的函数。
例如,假设show(A)开始运行。函数调用在第3行。显示(B)的意思 -将项目添加到堆栈,意思是“你需要在第2行继续使用本地变量状态node=A” —到第0行,节点为B。
为了执行代码,系统运行指令。当遇到函数调用时,系统将需要的信息推回到原来的位置,运行函数代码,当函数完成时,弹出关于需要继续执行的位置的信息。
我的例子是用Clojure编写的,但是应该很容易翻译成任何语言。
给定这个函数,当n值较大时StackOverflows:
(defn factorial [n]
(if (< n 2)
1
(*' n (factorial (dec n)))))
我们可以用以下方式定义一个使用自己堆栈的版本:
(defn factorial [n]
(loop [n n
stack []]
(if (< n 2)
(return 1 stack)
;; else loop with new values
(recur (dec n)
;; push function onto stack
(cons (fn [n-1!]
(*' n n-1!))
stack)))))
其中return定义为:
(defn return
[v stack]
(reduce (fn [acc f]
(f acc))
v
stack))
这也适用于更复杂的函数,例如阿克曼函数:
(defn ackermann [m n]
(cond
(zero? m)
(inc n)
(zero? n)
(recur (dec m) 1)
:else
(recur (dec m)
(ackermann m (dec n)))))
可以转化为:
(defn ackermann [m n]
(loop [m m
n n
stack []]
(cond
(zero? m)
(return (inc n) stack)
(zero? n)
(recur (dec m) 1 stack)
:else
(recur m
(dec n)
(cons #(ackermann (dec m) %)
stack)))))
努力使你的递归调用尾部递归(递归的最后一个语句是递归调用)。一旦你有了它,将它转换为迭代通常是相当容易的。
另一个使用堆栈将递归函数转换为迭代函数的简单而完整的示例。
#include <iostream>
#include <stack>
using namespace std;
int GCD(int a, int b) { return b == 0 ? a : GCD(b, a % b); }
struct Par
{
int a, b;
Par() : Par(0, 0) {}
Par(int _a, int _b) : a(_a), b(_b) {}
};
int GCDIter(int a, int b)
{
stack<Par> rcstack;
if (b == 0)
return a;
rcstack.push(Par(b, a % b));
Par p;
while (!rcstack.empty())
{
p = rcstack.top();
rcstack.pop();
if (p.b == 0)
continue;
rcstack.push(Par(p.b, p.a % p.b));
}
return p.a;
}
int main()
{
//cout << GCD(24, 36) << endl;
cout << GCDIter(81, 36) << endl;
cin.get();
return 0;
}