与时间模块在python是可能测量经过的时间?如果是,我该怎么做?

我需要这样做,以便如果光标在小部件中停留了一段时间,就会发生一个事件。


当前回答

在编程中,主要有两种测量时间的方法,结果不同:

>>> print(time.process_time()); time.sleep(10); print(time.process_time())
0.11751394000000001
0.11764988400000001  # took  0 seconds and a bit
>>> print(time.perf_counter()); time.sleep(10); print(time.perf_counter())
3972.465770326
3982.468109075       # took 10 seconds and a bit

Processor Time: This is how long this specific process spends actively being executed on the CPU. Sleep, waiting for a web request, or time when only other processes are executed will not contribute to this. Use time.process_time() Wall-Clock Time: This refers to how much time has passed "on a clock hanging on the wall", i.e. outside real time. Use time.perf_counter() time.time() also measures wall-clock time but can be reset, so you could go back in time time.monotonic() cannot be reset (monotonic = only goes forward) but has lower precision than time.perf_counter()

其他回答

更长的一段时间。

import time
start_time = time.time()
...
e = int(time.time() - start_time)
print('{:02d}:{:02d}:{:02d}'.format(e // 3600, (e % 3600 // 60), e % 60))

将打印

00:03:15

如果超过24小时

25:33:57

这是受到霍夫斯特回答的启发。谢谢你,罗格尔!

start_time = time.time()
# your code
elapsed_time = time.time() - start_time

你也可以编写简单的装饰器来简化各种函数执行时间的测量:

import time
from functools import wraps

PROF_DATA = {}

def profile(fn):
    @wraps(fn)
    def with_profiling(*args, **kwargs):
        start_time = time.time()

        ret = fn(*args, **kwargs)

        elapsed_time = time.time() - start_time

        if fn.__name__ not in PROF_DATA:
            PROF_DATA[fn.__name__] = [0, []]
        PROF_DATA[fn.__name__][0] += 1
        PROF_DATA[fn.__name__][1].append(elapsed_time)

        return ret

    return with_profiling

def print_prof_data():
    for fname, data in PROF_DATA.items():
        max_time = max(data[1])
        avg_time = sum(data[1]) / len(data[1])
        print "Function %s called %d times. " % (fname, data[0]),
        print 'Execution time max: %.3f, average: %.3f' % (max_time, avg_time)

def clear_prof_data():
    global PROF_DATA
    PROF_DATA = {}

用法:

@profile
def your_function(...):
    ...

您可以同时分析多个函数。然后要打印测量值,只需调用print_prof_data():

Time.time()就可以了。

import time

start = time.time()
# run your code
end = time.time()

elapsed = end - start

你可能想看看这个问题,但我认为没有必要。

这是一个更新的Vadim Shender的聪明的代码与表格输出:

import collections
import time
from functools import wraps

PROF_DATA = collections.defaultdict(list)

def profile(fn):
    @wraps(fn)
    def with_profiling(*args, **kwargs):
        start_time = time.time()
        ret = fn(*args, **kwargs)
        elapsed_time = time.time() - start_time
        PROF_DATA[fn.__name__].append(elapsed_time)
        return ret
    return with_profiling

Metrics = collections.namedtuple("Metrics", "sum_time num_calls min_time max_time avg_time fname")

def print_profile_data():
    results = []
    for fname, elapsed_times in PROF_DATA.items():
        num_calls = len(elapsed_times)
        min_time = min(elapsed_times)
        max_time = max(elapsed_times)
        sum_time = sum(elapsed_times)
        avg_time = sum_time / num_calls
        metrics = Metrics(sum_time, num_calls, min_time, max_time, avg_time, fname)
        results.append(metrics)
    total_time = sum([m.sum_time for m in results])
    print("\t".join(["Percent", "Sum", "Calls", "Min", "Max", "Mean", "Function"]))
    for m in sorted(results, reverse=True):
        print("%.1f\t%.3f\t%d\t%.3f\t%.3f\t%.3f\t%s" % (100 * m.sum_time / total_time, m.sum_time, m.num_calls, m.min_time, m.max_time, m.avg_time, m.fname))
    print("%.3f Total Time" % total_time)

您需要导入时间,然后使用time.time()方法来了解当前时间。

import time

start_time=time.time() #taking current time as starting time

#here your code

elapsed_time=time.time()-start_time #again taking current time - starting time