代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
Python的解决方案:
def hammingWeight(n: int) -> int:
sums = 0
while (n!=0):
sums+=1
n = n &(n-1)
return sums
在二进制表示中,n中最不有效的1位总是对应n - 1中的0位。因此,对n和n - 1这两个数进行and运算总是将n中最不有效的1位翻转为0,并保持所有其他位相同。
其他回答
为什么不迭代地除以2呢?
count = 0 while n > 0 if (n % 2) == 1 count += 1 n /= 2
我同意这不是最快的,但是“最好”这个词有点含糊不清。我认为“最好”应该有一个清晰的元素
unsigned int count_bit(unsigned int x)
{
x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x & 0x0F0F0F0F) + ((x >> 4) & 0x0F0F0F0F);
x = (x & 0x00FF00FF) + ((x >> 8) & 0x00FF00FF);
x = (x & 0x0000FFFF) + ((x >> 16)& 0x0000FFFF);
return x;
}
我来解释一下这个算法。
该算法基于分治算法。假设有一个8位整数213(二进制的11010101),算法是这样工作的(每次合并两个邻居块):
+-------------------------------+
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | <- x
| 1 0 | 0 1 | 0 1 | 0 1 | <- first time merge
| 0 0 1 1 | 0 0 1 0 | <- second time merge
| 0 0 0 0 0 1 0 1 | <- third time ( answer = 00000101 = 5)
+-------------------------------+
int bitcount(unsigned int n)
{
int count=0;
while(n)
{
count += n & 0x1u;
n >>= 1;
}
return count;
}
迭代的“计数”运行的时间与总比特数成比例。它只是循环遍历所有位,因为while条件而稍微提前终止。如果1'S或集合位是稀疏的且在最低有效位之间,则很有用。
我给出了两个算法来回答这个问题,
package countSetBitsInAnInteger;
import java.util.Scanner;
public class UsingLoop {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
try {
System.out.println("Enter a integer number to check for set bits in it");
int n = in.nextInt();
System.out.println("Using while loop, we get the number of set bits as: " + usingLoop(n));
System.out.println("Using Brain Kernighan's Algorithm, we get the number of set bits as: " + usingBrainKernighan(n));
System.out.println("Using ");
}
finally {
in.close();
}
}
private static int usingBrainKernighan(int n) {
int count = 0;
while(n > 0) {
n& = (n-1);
count++;
}
return count;
}
/*
Analysis:
Time complexity = O(lgn)
Space complexity = O(1)
*/
private static int usingLoop(int n) {
int count = 0;
for(int i=0; i<32; i++) {
if((n&(1 << i)) != 0)
count++;
}
return count;
}
/*
Analysis:
Time Complexity = O(32) // Maybe the complexity is O(lgn)
Space Complexity = O(1)
*/
}
一个简单的方法,应该工作得很好少量的比特它像这样(在这个例子中的4位):
(i & 1) + (i & 2)/2 + (i & 4)/4 + (i & 8)/8
对于少量的比特,其他人会推荐这种简单的解决方案吗?