代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

我认为Brian Kernighan的方法也很有用… 它的迭代次数和设置位个数一样多。因此,如果我们有一个32位的单词,只设置了高位,那么它将只经过一次循环。

int countSetBits(unsigned int n) { 
    unsigned int n; // count the number of bits set in n
    unsigned int c; // c accumulates the total bits set in n
    for (c=0;n>0;n=n&(n-1)) c++; 
    return c; 
}

出版于1988年的C编程语言第二版(由Brian W. Kernighan和Dennis M. Ritchie编写)在练习2-9中提到了这一点。2006年4月19日,Don Knuth向我指出,这种方法“是由Peter Wegner在CACM 3(1960), 322中首次发表的。(同样由德里克·莱默(Derrick Lehmer)独立发现,并于1964年在贝肯巴赫(Beckenbach)编辑的一本书中出版。)

其他回答

public class BinaryCounter {

private int N;

public BinaryCounter(int N) {
    this.N = N;
}

public static void main(String[] args) {

    BinaryCounter counter=new BinaryCounter(7);     
    System.out.println("Number of ones is "+ counter.count());

}

public int count(){
    if(N<=0) return 0;
    int counter=0;
    int K = 0;
    do{
        K = biggestPowerOfTwoSmallerThan(N);
        N = N-K;
        counter++;
    }while (N != 0);
    return counter;

}

private int biggestPowerOfTwoSmallerThan(int N) {
    if(N==1) return 1;
    for(int i=0;i<N;i++){
        if(Math.pow(2, i) > N){
            int power = i-1;
            return (int) Math.pow(2, power);
        }
    }
    return 0;
}
}
#!/user/local/bin/perl


    $c=0x11BBBBAB;
     $count=0;
     $m=0x00000001;
    for($i=0;$i<32;$i++)
    {
        $f=$c & $m;
        if($f == 1)
        {
            $count++;
        }
        $c=$c >> 1;
    }
    printf("%d",$count);

ive done it through a perl script. the number taken is $c=0x11BBBBAB   
B=3 1s   
A=2 1s   
so in total  
1+1+3+3+3+2+3+3=19

对于232查找表和逐个遍历每个位之间的折中方法:

int bitcount(unsigned int num){
    int count = 0;
    static int nibblebits[] =
        {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
    for(; num != 0; num >>= 4)
        count += nibblebits[num & 0x0f];
    return count;
}

从http://ctips.pbwiki.com/CountBits

你要找的函数通常被称为二进制数的“横向和”或“总体数”。Knuth在前分册1A,第11-12页中讨论了它(尽管在第2卷,4.6.3-(7)中有简要的参考)。

经典文献是Peter Wegner的文章“二进制计算机中的一种计数技术”,摘自ACM通讯,卷3(1960)第5号,第322页。他给出了两种不同的算法,一种针对“稀疏”(即1的数量很少)的数字进行了优化,另一种针对相反的情况。

这不是最快或最好的解决方案,但我以自己的方式发现了同样的问题,我开始反复思考。最后我意识到它可以这样做,如果你从数学方面得到这个问题,画一个图,然后你发现它是一个有周期部分的函数,然后你意识到周期之间的差异……所以你看:

unsigned int f(unsigned int x)
{
    switch (x) {
        case 0:
            return 0;
        case 1:
            return 1;
        case 2:
            return 1;
        case 3:
            return 2;
        default:
            return f(x/4) + f(x%4);
    }
}