代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

大约在1990年,我为RISC机器编写了一个快速比特计数宏。它不使用高级算术(乘法,除法,%),内存提取(太慢),分支(太慢),但它确实假设CPU有一个32位的桶移位器(换句话说,>> 1和>> 32占用相同的周期)。它假定小常数(如6、12、24)加载到寄存器中不需要花费任何代价,或者存储在临时变量中并反复重用。

在这些假设下,在大多数RISC机器上,它在大约16个周期/指令中计算32位。注意,15条指令/周期接近于周期或指令数量的下界,因为似乎至少需要3条指令(掩码、移位、运算符)才能将加数的数量减半,因此log_2(32) = 5,5 x 3 = 15条指令是准下界。

#define BitCount(X,Y)           \
                Y = X - ((X >> 1) & 033333333333) - ((X >> 2) & 011111111111); \
                Y = ((Y + (Y >> 3)) & 030707070707); \
                Y =  (Y + (Y >> 6)); \
                Y = (Y + (Y >> 12) + (Y >> 24)) & 077;

这是第一步也是最复杂的一步:

input output
AB    CD             Note
00    00             = AB
01    01             = AB
10    01             = AB - (A >> 1) & 0x1
11    10             = AB - (A >> 1) & 0x1

所以如果我取上面的第一列(A),右移1位,然后从AB减去它,我就得到了输出(CD)。扩展到3位类似;如果你愿意,你可以用一个8行布尔表来检查它。

不吉利

其他回答

Java JDK1.5

Integer.bitCount (n);

其中n是要计算1的数。

检查,

Integer.highestOneBit(n);
Integer.lowestOneBit(n);
Integer.numberOfLeadingZeros(n);
Integer.numberOfTrailingZeros(n);

//Beginning with the value 1, rotate left 16 times
     n = 1;
         for (int i = 0; i < 16; i++) {
            n = Integer.rotateLeft(n, 1);
            System.out.println(n);
         }

一个快速的c#解决方案,使用预先计算的字节位计数表,并根据输入大小进行分支。

public static class BitCount
{
    public static uint GetSetBitsCount(uint n)
    {
        var counts = BYTE_BIT_COUNTS;
        return n <= 0xff ? counts[n]
             : n <= 0xffff ? counts[n & 0xff] + counts[n >> 8]
             : n <= 0xffffff ? counts[n & 0xff] + counts[(n >> 8) & 0xff] + counts[(n >> 16) & 0xff]
             : counts[n & 0xff] + counts[(n >> 8) & 0xff] + counts[(n >> 16) & 0xff] + counts[(n >> 24) & 0xff];
    }

    public static readonly uint[] BYTE_BIT_COUNTS =
    {
        0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
        1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
        1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
        2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
        1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
        2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
        2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
        3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
        1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
        2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
        2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
        3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
        2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
        3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
        3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
        4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
    };
}

"最佳算法"是什么意思?短码还是长码?您的代码看起来非常优雅,并且具有恒定的执行时间。代码也很短。

但如果速度是主要因素,而不是代码大小,那么我认为以下方法可以更快:

       static final int[] BIT_COUNT = { 0, 1, 1, ... 256 values with a bitsize of a byte ... };
        static int bitCountOfByte( int value ){
            return BIT_COUNT[ value & 0xFF ];
        }

        static int bitCountOfInt( int value ){
            return bitCountOfByte( value ) 
                 + bitCountOfByte( value >> 8 ) 
                 + bitCountOfByte( value >> 16 ) 
                 + bitCountOfByte( value >> 24 );
        }

我认为这不会更快的64位值,但32位值可以更快。

一个简单的算法来计算设置位的数量:

int countbits(n) {
    int count = 0;
    while(n != 0) {
        n = n & (n-1);
        count++;
    }
    return count;
}

以11(1011)为例,尝试手动运行该算法。它应该对你有很大帮助!

下面是功能优等递归解决方案,它是迄今为止最纯粹的一个(并且可以用于任何位长度!):

template<typename T>
int popcnt(T n)
{
  if (n>0)
    return n&1 + popcnt(n>>1);
  return 0; 
}