代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

我在任何地方都没见过这种方法:

int nbits(unsigned char v) {
    return ((((v - ((v >> 1) & 0x55)) * 0x1010101) & 0x30c00c03) * 0x10040041) >> 0x1c;
}

它每字节工作一次,所以对于一个32位整数,它必须被调用四次。它源于横向加法,但它使用两个32位乘法将指令数量减少到只有7条。

大多数当前的C编译器将使用SIMD (SSE2)指令优化这个函数,当请求的数量是4的倍数时,它变得非常有竞争力。它是可移植的,可以定义为宏或内联函数,并且不需要数据表。

这种方法可以扩展为一次处理16位,使用64位乘法。但是,当所有16位都被设置时,它会失败,返回0,所以它只能在0xFFFF输入值不存在时使用。由于64位操作,它也比较慢,并且没有很好地优化。

其他回答

有些语言以一种可以使用有效硬件支持(如果可用的话)的方式可移植地公开操作,而有些语言则希望使用一些不错的库。

例如(从语言表中):

c++有std::bitset<>::count()或c++ 20 std::popcount(T x) Java有Java .lang. integer . bitcount()(也用于Long或BigInteger) c#有system . numbers . bitoperations . popcount () Python有int.bit_count()(从3.10开始)

不过,并不是所有的编译器/库都能在HW支持可用时使用它。(值得注意的是MSVC,即使有选项使std::popcount内联为x86 popcnt,它的std::bitset::count仍然总是使用查找表。这有望在未来的版本中改变。)

当可移植语言没有这种基本的位操作时,还要考虑编译器的内置函数。以GNU C为例:

int __builtin_popcount (unsigned int x);
int __builtin_popcountll (unsigned long long x);

In the worst case (no single-instruction HW support) the compiler will generate a call to a function (which in current GCC uses a shift/and bit-hack like this answer, at least for x86). In the best case the compiler will emit a cpu instruction to do the job. (Just like a * or / operator - GCC will use a hardware multiply or divide instruction if available, otherwise will call a libgcc helper function.) Or even better, if the operand is a compile-time constant after inlining, it can do constant-propagation to get a compile-time-constant popcount result.

GCC内置甚至可以跨多个平台工作。Popcount几乎已经成为x86架构的主流,所以现在开始使用内置是有意义的,这样你就可以重新编译,让它内联硬件指令时,你编译-mpopcnt或包括(例如https://godbolt.org/z/Ma5e5a)。其他架构已经有popcount很多年了,但在x86领域,仍然有一些古老的Core 2和类似的老式AMD cpu在使用。


在x86上,你可以告诉编译器它可以通过-mpopcnt(也可以通过-msse4.2暗示)假设支持popcnt指令。参见GCC x86选项。-march=nehalem -mtune=skylake(或-march=任何您希望您的代码假设和调优的CPU)可能是一个不错的选择。在较旧的CPU上运行生成的二进制文件将导致非法指令错误。

要为构建它们的机器优化二进制文件,请使用-march=native(与gcc、clang或ICC一起使用)。

MSVC为x86的popcnt指令提供了一个内在的特性,但与gcc不同的是,它实际上是硬件指令的一个内在特性,需要硬件支持。


使用std::bitset<>::count()代替内置的

理论上,任何知道如何有效地为目标CPU进行popcount的编译器都应该通过ISO c++ std::bitset<>来公开该功能。实际上,对于某些目标cpu,在某些情况下使用bit-hack AND/shift/ADD可能会更好。

For target architectures where hardware popcount is an optional extension (like x86), not all compilers have a std::bitset that takes advantage of it when available. For example, MSVC has no way to enable popcnt support at compile time, and it's std::bitset<>::count always uses a table lookup, even with /Ox /arch:AVX (which implies SSE4.2, which in turn implies the popcnt feature.) (Update: see below; that does get MSVC's C++20 std::popcount to use x86 popcnt, but still not its bitset<>::count. MSVC could fix that by updating their standard library headers to use std::popcount when available.)

但是,至少您得到了可以在任何地方工作的可移植的东西,并且使用带有正确目标选项的gcc/clang,您可以获得支持它的体系结构的硬件popcount。

#include <bitset>
#include <limits>
#include <type_traits>

template<typename T>
//static inline  // static if you want to compile with -mpopcnt in one compilation unit but not others
typename std::enable_if<std::is_integral<T>::value,  unsigned >::type 
popcount(T x)
{
    static_assert(std::numeric_limits<T>::radix == 2, "non-binary type");

    // sizeof(x)*CHAR_BIT
    constexpr int bitwidth = std::numeric_limits<T>::digits + std::numeric_limits<T>::is_signed;
    // std::bitset constructor was only unsigned long before C++11.  Beware if porting to C++03
    static_assert(bitwidth <= std::numeric_limits<unsigned long long>::digits, "arg too wide for std::bitset() constructor");

    typedef typename std::make_unsigned<T>::type UT;        // probably not needed, bitset width chops after sign-extension

    std::bitset<bitwidth> bs( static_cast<UT>(x) );
    return bs.count();
}

参见Godbolt编译器资源管理器上gcc、clang、icc和MSVC中的asm。

x86-64 gcc -O3 -std=gnu++11 -mpopcnt输出:

unsigned test_short(short a) { return popcount(a); }
    movzx   eax, di      # note zero-extension, not sign-extension
    popcnt  rax, rax
    ret

unsigned test_int(int a) { return popcount(a); }
    mov     eax, edi
    popcnt  rax, rax        # unnecessary 64-bit operand size
    ret

unsigned test_u64(unsigned long long a) { return popcount(a); }
    xor     eax, eax     # gcc avoids false dependencies for Intel CPUs
    popcnt  rax, rdi
    ret

PowerPC64 gcc -O3 -std=gnu++11发出(对于int arg版本):

    rldicl 3,3,0,32     # zero-extend from 32 to 64-bit
    popcntd 3,3         # popcount
    blr

这个源代码不是x86特定的,也不是gnu特定的,只是在gcc/clang/icc下编译得很好,至少在针对x86(包括x86-64)时是这样。

还要注意,对于没有单指令popcount的体系结构,gcc的回退是逐字节表查找。例如,这对ARM来说就不是什么好事。

c++ 20有std::popcount(T)

不幸的是,当前libstdc++头文件用特殊情况定义了它,if(x==0) return 0;在开始时,clang在编译x86时不会优化:

#include <bit>
int bar(unsigned x) {
    return std::popcount(x);
}

clang 11.0.1 -O3 -std=gnu++20 -march=nehalem (https://godbolt.org/z/arMe5a)

# clang 11
    bar(unsigned int):                                # @bar(unsigned int)
        popcnt  eax, edi
        cmove   eax, edi         # redundant: if popcnt result is 0, return the original 0 instead of the popcnt-generated 0...
        ret

但是GCC编译得很好:

# gcc 10
        xor     eax, eax         # break false dependency on Intel SnB-family before Ice Lake.
        popcnt  eax, edi
        ret

即使是MSVC也能很好地使用它,只要你使用-arch:AVX或更高版本(并使用-std:c++latest启用c++ 20)。https://godbolt.org/z/7K4Gef

int bar(unsigned int) PROC                                 ; bar, COMDAT
        popcnt  eax, ecx
        ret     0
int bar(unsigned int) ENDP                                 ; bar
int countBits(int x)
{
    int n = 0;
    if (x) do n++;
           while(x=x&(x-1));
    return n;
}   

或者:

int countBits(int x) { return (x)? 1+countBits(x&(x-1)): 0; }

在我最初的回答7年半之后,@PeterMortensen质疑这是否是有效的C语法。我发布了一个在线编译器的链接,显示它实际上是完全有效的语法(代码如下)。

#include <stdio.h>
int countBits(int x)
{
    int n = 0;
    if (x) do n++;           /* Totally Normal Valid code. */
           while(x=x&(x-1)); /* Nothing to see here.       */
    return n;
}   
 
int main(void) {
    printf("%d\n", countBits(25));
    return 0;
}
 

输出:

3

如果你想重新写清楚,它看起来是这样的:

if (x)
{
    do
    {
        n++;
    } while(x=x&(x-1));
}

但在我看来,这太过分了。

然而,我也意识到函数可以变得更短,但可能更神秘,写为:

int countBits(int x)
{
    int n = 0;
    while (x) x=(n++,x&(x-1));
    return n;
}   

天真的解决方案

时间复杂度为O(no。n的比特数)

int countSet(unsigned int n)
{
    int res=0;
    while(n!=0){
      res += (n&1);
      n >>= 1;      // logical right shift, like C unsigned or Java >>>
    }
   return res;
}

Brian Kerningam的算法

时间复杂度为O(n中设置位的个数)

int countSet(unsigned int n)
{
  int res=0;
  while(n != 0)
  {
    n = (n & (n-1));
    res++;
  }
  return res;
} 

32位数字的查找表方法-在这种方法中,我们将32位数字分解为4个8位数字的块

时间复杂度为O(1)

static unsigned char table[256]; /* the table size is 256,
                        the number of values i&0xFF (8 bits) can have */

void initialize() //holds the number of set bits from 0 to 255
{
  table[0]=0;
  for(unsigned int i=1;i<256;i++)
     table[i]=(i&1)+table[i>>1];
}

int countSet(unsigned int n)
{
  // 0xff is hexadecimal representation of 8 set bits.
  int res=table[n & 0xff];
  n=n>>8;
  res=res+ table[n & 0xff];
  n=n>>8;
  res=res+ table[n & 0xff];
  n=n>>8;
  res=res+ table[n & 0xff];
  return res;
}

我使用下面更直观的代码。

int countSetBits(int n) {
    return !n ? 0 : 1 + countSetBits(n & (n-1));
}

逻辑:n & (n-1)重置n的最后一个集合位。

附注:我知道这不是O(1)解,尽管这是一个有趣的解。

我个人使用这个:

  public static int myBitCount(long L){
      int count = 0;
      while (L != 0) {
         count++;
         L ^= L & -L; 
      }
      return count;
  }