代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
几个悬而未决的问题:-
如果这个数是负的呢? 如果这个数字是1024,那么“迭代除以2”方法将迭代10次。
我们可以修改算法以支持负数:-
count = 0
while n != 0
if ((n % 2) == 1 || (n % 2) == -1
count += 1
n /= 2
return count
现在为了克服第二个问题,我们可以编写这样的算法:-
int bit_count(int num)
{
int count=0;
while(num)
{
num=(num)&(num-1);
count++;
}
return count;
}
完整参考请参见:
http://goursaha.freeoda.com/Miscellaneous/IntegerBitCount.html
其他回答
int bitcount(unsigned int n)
{
int count=0;
while(n)
{
count += n & 0x1u;
n >>= 1;
}
return count;
}
迭代的“计数”运行的时间与总比特数成比例。它只是循环遍历所有位,因为while条件而稍微提前终止。如果1'S或集合位是稀疏的且在最低有效位之间,则很有用。
int countBits(int x)
{
int n = 0;
if (x) do n++;
while(x=x&(x-1));
return n;
}
或者:
int countBits(int x) { return (x)? 1+countBits(x&(x-1)): 0; }
在我最初的回答7年半之后,@PeterMortensen质疑这是否是有效的C语法。我发布了一个在线编译器的链接,显示它实际上是完全有效的语法(代码如下)。
#include <stdio.h>
int countBits(int x)
{
int n = 0;
if (x) do n++; /* Totally Normal Valid code. */
while(x=x&(x-1)); /* Nothing to see here. */
return n;
}
int main(void) {
printf("%d\n", countBits(25));
return 0;
}
输出:
3
如果你想重新写清楚,它看起来是这样的:
if (x)
{
do
{
n++;
} while(x=x&(x-1));
}
但在我看来,这太过分了。
然而,我也意识到函数可以变得更短,但可能更神秘,写为:
int countBits(int x)
{
int n = 0;
while (x) x=(n++,x&(x-1));
return n;
}
一个快速的c#解决方案,使用预先计算的字节位计数表,并根据输入大小进行分支。
public static class BitCount
{
public static uint GetSetBitsCount(uint n)
{
var counts = BYTE_BIT_COUNTS;
return n <= 0xff ? counts[n]
: n <= 0xffff ? counts[n & 0xff] + counts[n >> 8]
: n <= 0xffffff ? counts[n & 0xff] + counts[(n >> 8) & 0xff] + counts[(n >> 16) & 0xff]
: counts[n & 0xff] + counts[(n >> 8) & 0xff] + counts[(n >> 16) & 0xff] + counts[(n >> 24) & 0xff];
}
public static readonly uint[] BYTE_BIT_COUNTS =
{
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
};
}
在Java 8或9中只调用Integer。bitCount。
我发现了一个在数组中使用SIMD指令(SSSE3和AVX2)的位计数实现。它的性能比使用__popcnt64内禀函数要好2-2.5倍。
SSSE3版:
#include <smmintrin.h>
#include <stdint.h>
const __m128i Z = _mm_set1_epi8(0x0);
const __m128i F = _mm_set1_epi8(0xF);
//Vector with pre-calculated bit count:
const __m128i T = _mm_setr_epi8(0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4);
uint64_t BitCount(const uint8_t * src, size_t size)
{
__m128i _sum = _mm128_setzero_si128();
for (size_t i = 0; i < size; i += 16)
{
//load 16-byte vector
__m128i _src = _mm_loadu_si128((__m128i*)(src + i));
//get low 4 bit for every byte in vector
__m128i lo = _mm_and_si128(_src, F);
//sum precalculated value from T
_sum = _mm_add_epi64(_sum, _mm_sad_epu8(Z, _mm_shuffle_epi8(T, lo)));
//get high 4 bit for every byte in vector
__m128i hi = _mm_and_si128(_mm_srli_epi16(_src, 4), F);
//sum precalculated value from T
_sum = _mm_add_epi64(_sum, _mm_sad_epu8(Z, _mm_shuffle_epi8(T, hi)));
}
uint64_t sum[2];
_mm_storeu_si128((__m128i*)sum, _sum);
return sum[0] + sum[1];
}
AVX2 版本:
#include <immintrin.h>
#include <stdint.h>
const __m256i Z = _mm256_set1_epi8(0x0);
const __m256i F = _mm256_set1_epi8(0xF);
//Vector with pre-calculated bit count:
const __m256i T = _mm256_setr_epi8(0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4);
uint64_t BitCount(const uint8_t * src, size_t size)
{
__m256i _sum = _mm256_setzero_si256();
for (size_t i = 0; i < size; i += 32)
{
//load 32-byte vector
__m256i _src = _mm256_loadu_si256((__m256i*)(src + i));
//get low 4 bit for every byte in vector
__m256i lo = _mm256_and_si256(_src, F);
//sum precalculated value from T
_sum = _mm256_add_epi64(_sum, _mm256_sad_epu8(Z, _mm256_shuffle_epi8(T, lo)));
//get high 4 bit for every byte in vector
__m256i hi = _mm256_and_si256(_mm256_srli_epi16(_src, 4), F);
//sum precalculated value from T
_sum = _mm256_add_epi64(_sum, _mm256_sad_epu8(Z, _mm256_shuffle_epi8(T, hi)));
}
uint64_t sum[4];
_mm256_storeu_si256((__m256i*)sum, _sum);
return sum[0] + sum[1] + sum[2] + sum[3];
}