我有一个数据框架:

s1 = pd.Series([5, 6, 7])
s2 = pd.Series([7, 8, 9])

df = pd.DataFrame([list(s1), list(s2)],  columns =  ["A", "B", "C"])

   A  B  C
0  5  6  7
1  7  8  9

[2 rows x 3 columns]

并且我需要添加第一行[2,3,4],得到:

   A  B  C
0  2  3  4
1  5  6  7
2  7  8  9

我尝试过append()和concat()函数,但找不到正确的方法。

如何添加/插入系列数据帧?


当前回答

不知道你是如何调用concat(),但它应该工作,只要两个对象是相同的类型。也许问题是你需要将你的第二个向量转换为一个数据框架?使用df,你定义了以下工作为我:

df2 = pd.DataFrame([[2,3,4]], columns=['A','B','C'])
pd.concat([df2, df])

其他回答

只需将row赋值给一个特定的索引,使用loc:

 df.loc[-1] = [2, 3, 4]  # adding a row
 df.index = df.index + 1  # shifting index
 df = df.sort_index()  # sorting by index

你会得到:

    A  B  C
 0  2  3  4
 1  5  6  7
 2  7  8  9

参见Pandas文档索引:放大设置。

给出熊猫数据框架的数据结构是一个序列列表(每个序列为一列),方便在任意位置插入一列。 我想到的一个办法是先转置数据帧,插入一列,再转置回来。你可能还需要重命名索引(行名),就像这样:

s1 = pd.Series([5, 6, 7])
s2 = pd.Series([7, 8, 9])

df = pd.DataFrame([list(s1), list(s2)],  columns =  ["A", "B", "C"])
df = df.transpose()
df.insert(0, 2, [2,3,4])
df = df.transpose()
df.index = [i for i in range(3)]
df

    A   B   C
0   2   3   4
1   5   6   7
2   7   8   9

我把一个简短的函数放在一起,在插入一行时允许更多的灵活性:

def insert_row(idx, df, df_insert):
    dfA = df.iloc[:idx, ]
    dfB = df.iloc[idx:, ]

    df = dfA.append(df_insert).append(dfB).reset_index(drop = True)

    return df

可以进一步缩写为:

def insert_row(idx, df, df_insert):
    return df.iloc[:idx, ].append(df_insert).append(df.iloc[idx:, ]).reset_index(drop = True)

然后你可以使用如下语句:

df = insert_row(2, df, df_new)

其中2是df中要插入df_new的索引位置。

下面是在不排序和重置索引的情况下将一行插入pandas数据框架的最佳方法:

import pandas as pd

df = pd.DataFrame(columns=['a','b','c'])

def insert(df, row):
    insert_loc = df.index.max()

    if pd.isna(insert_loc):
        df.loc[0] = row
    else:
        df.loc[insert_loc + 1] = row

insert(df,[2,3,4])
insert(df,[8,9,0])
print(df)
s1 = pd.Series([5, 6, 7])
s2 = pd.Series([7, 8, 9])

df = pd.DataFrame([list(s1), list(s2)],  columns =  ["A", "B", "C"])

要在任意位置插入新行,可以指定行位置: Row_pos = -1用于在顶部插入 或者row_pos = 0.5用于在第0行和第1行之间插入。

row_pos = -1
insert_row = [2,3,4]

df.loc[row_pos] = insert_row
df = df.sort_index()
df = df.reset_index(drop = True)

row_pos = -1

The outcome is:

    A   B   C
0   2   3   4
1   5   6   7
2   7   8   9

row_pos = 0.5

The outcome is:

    A   B   C
0   5   6   7
1   2   3   4
2   7   8   9