我有一个由装饰器转移变量insurance_mode的问题。我将通过以下装饰器语句来实现:

@execute_complete_reservation(True)
def test_booking_gta_object(self):
    self.test_select_gta_object()

但不幸的是,这种说法并不管用。也许也许有更好的办法来解决这个问题。

def execute_complete_reservation(test_case,insurance_mode):
    def inner_function(self,*args,**kwargs):
        self.test_create_qsf_query()
        test_case(self,*args,**kwargs)
        self.test_select_room_option()
        if insurance_mode:
            self.test_accept_insurance_crosseling()
        else:
            self.test_decline_insurance_crosseling()
        self.test_configure_pax_details()
        self.test_configure_payer_details

    return inner_function

当前回答

如果函数和装饰器都必须接受参数,可以采用下面的方法。

例如,有一个名为decorator1的装饰器,它接受一个参数

@decorator1(5)
def func1(arg1, arg2):
    print (arg1, arg2)

func1(1, 2)

现在,如果decorator1参数必须是动态的,或者在调用函数时传递,

def func1(arg1, arg2):
    print (arg1, arg2)


a = 1
b = 2
seconds = 10

decorator1(seconds)(func1)(a, b)

在上面的代码中

Seconds是decorator1的参数 A b是func1的参数

其他回答

匿名设置中的参数装饰。

在许多可能的“嵌套”语法糖装饰的两种变化中被提出。它们之间的区别在于执行wrt到目标函数的顺序,并且它们的效果通常是独立的(不相互作用)。

装饰器允许在目标函数执行之前或之后“注入”自定义函数。

这两个函数的调用都发生在一个元组中。默认情况下,返回值是目标函数的结果。

语法糖装饰@first_internal(send_msg)('…end')要求版本>= 3.9,请参阅PEP 614放松对装饰器的语法限制。

functools使用。以保留目标函数的文档字符串。

from functools import wraps


def first_external(f_external):
    return lambda *args_external, **kwargs_external:\
           lambda f_target: wraps(f_target)(
               lambda *args_target, **kwargs_target:
                  (f_external(*args_external, **kwargs_external),
                   f_target(*args_target, **kwargs_target))[1]
           )


def first_internal(f_external):
    return lambda *args_external, **kwargs_external:\
           lambda f_target: wraps(f_target)(
               lambda *args_target, **kwargs_target:
                  (f_target(*args_target, **kwargs_target),
                   f_external(*args_external, **kwargs_external))[0]
           )


def send_msg(x):
   print('msg>', x)


@first_internal(send_msg)('...end')    # python >= 3.9
@first_external(send_msg)("start...")  # python >= 3.9
def test_function(x):
    """Test function"""
    print('from test_function')
    return x


test_function(2)

输出

msg> start...
from test_function
msg> ...end

讲话

composition decorators, such as pull-back and push-forward (maybe in a more Computer Science terminology: co- and resp. contra-variant decorator), could more useful but need ad-hoc care, for example composition rules, check which parameters go where, etc syntactic sugar acts as a kind of partial of the target function: once decorated there is no way back (without extra imports) but it is not mandatory, a decorator can be used also in its extended forms, i.e. first_external(send_msg)("start...")(test_function)(2) the results of a workbench with timeit.repeat(..., repeat=5, number=10000) which compare the classical def and lambda decoration shows that are almost equivalent: for lambda: [6.200810984999862, 6.035239247000391, 5.346362481000142, 5.987880147000396, 5.5331550319997405] - mean -> 5.8206 for def: [6.165001932999985, 5.554595884999799, 5.798066574999666, 5.678178028000275, 5.446507932999793] - mean -> 5.7284 naturally an non-anonymous counterpart is possible and provides more flexibility

在这里,我们用两个不同的名称和两个不同的年龄运行了两次display info。 现在,每当我们运行display info时,我们的装饰器还添加了打印换行函数前后一行的功能。

def decorator_function(original_function):
    def wrapper_function(*args, **kwargs):
        print('Executed Before', original_function.__name__)
        result = original_function(*args, **kwargs)
        print('Executed After', original_function.__name__, '\n')
        return result
    return wrapper_function


@decorator_function
def display_info(name, age):
    print('display_info ran with arguments ({}, {})'.format(name, age))


display_info('Mr Bean', 66)
display_info('MC Jordan', 57)

输出:

Executed Before display_info
display_info ran with arguments (Mr Bean, 66)
Executed After display_info 

Executed Before display_info
display_info ran with arguments (MC Jordan, 57)
Executed After display_info 

现在让我们继续让decorator函数接受参数。 例如,假设我想为包装器中的所有这些打印语句添加一个可定制的前缀。 现在这将是一个很好的候选参数的装饰。 我们传入的参数就是那个前缀。现在为了做到这一点,我们将添加另一个外层到我们的装饰器中,我将把这个函数称为前缀装饰器。

def prefix_decorator(prefix):
    def decorator_function(original_function):
        def wrapper_function(*args, **kwargs):
            print(prefix, 'Executed Before', original_function.__name__)
            result = original_function(*args, **kwargs)
            print(prefix, 'Executed After', original_function.__name__, '\n')
            return result
        return wrapper_function
    return decorator_function


@prefix_decorator('LOG:')
def display_info(name, age):
    print('display_info ran with arguments ({}, {})'.format(name, age))


display_info('Mr Bean', 66)
display_info('MC Jordan', 57)

输出:

LOG: Executed Before display_info
display_info ran with arguments (Mr Bean, 66)
LOG: Executed After display_info 

LOG: Executed Before display_info
display_info ran with arguments (MC Jordan, 57)
LOG: Executed After display_info 

现在我们在包装器函数的print语句之前有了LOG:前缀,你可以随时更改它。

它是一个可以以多种方式调用的装饰器(在python3.7中测试):

import functools


def my_decorator(*args_or_func, **decorator_kwargs):

    def _decorator(func):

        @functools.wraps(func)
        def wrapper(*args, **kwargs):

            if not args_or_func or callable(args_or_func[0]):
                # Here you can set default values for positional arguments
                decorator_args = ()
            else:
                decorator_args = args_or_func

            print(
                "Available inside the wrapper:",
                decorator_args, decorator_kwargs
            )

            # ...
            result = func(*args, **kwargs)
            # ...

            return result

        return wrapper

    return _decorator(args_or_func[0]) \
        if args_or_func and callable(args_or_func[0]) else _decorator


@my_decorator
def func_1(arg): print(arg)

func_1("test")
# Available inside the wrapper: () {}
# test


@my_decorator()
def func_2(arg): print(arg)

func_2("test")
# Available inside the wrapper: () {}
# test


@my_decorator("any arg")
def func_3(arg): print(arg)

func_3("test")
# Available inside the wrapper: ('any arg',) {}
# test


@my_decorator("arg_1", 2, [3, 4, 5], kwarg_1=1, kwarg_2="2")
def func_4(arg): print(arg)

func_4("test")
# Available inside the wrapper: ('arg_1', 2, [3, 4, 5]) {'kwarg_1': 1, 'kwarg_2': '2'}
# test

PS感谢用户@norok2 - https://stackoverflow.com/a/57268935/5353484

UPD装饰器,用于根据注释验证类的函数和方法的参数和/或结果。可用于同步或异步版本:https://github.com/EvgeniyBurdin/valdec

带参数的装饰器的语法有点不同——带参数的装饰器应该返回一个函数,该函数将接受一个函数并返回另一个函数。它应该返回一个普通的装饰器。有点困惑,对吧?我的意思是:

def decorator_factory(argument):
    def decorator(function):
        def wrapper(*args, **kwargs):
            funny_stuff()
            something_with_argument(argument)
            result = function(*args, **kwargs)
            more_funny_stuff()
            return result
        return wrapper
    return decorator

在这里你可以读到更多关于这个主题的内容——也可以使用可调用对象来实现这个功能,这里也有解释。

我认为这里有一个工作的、现实世界的示例,其中包含最通用的用例的使用示例。


下面是函数的装饰器,它在进入和退出函数时输出log。

参数控制是否打印输入输出值,日志级别等。

import logging 
from functools import wraps


def log_in_out(logger=logging.get_logger(), is_print_input=True, is_print_output=True, is_method=True, log_level=logging.DEBUG):
    """
    @param logger-
    @param is_print_input- toggle printing input arguments
    @param is_print_output- toggle printing output values
    @param is_method- True for methods, False for functions. Makes "self" not printed in case of is_print_input==True
    @param log_level-

    @returns- a decorator that logs to logger when entering or exiting the decorated function.
    Don't uglify your code!
    """

    def decor(fn):
        @wraps(fn)
        def wrapper(*args, **kwargs):
            if is_print_input:
                logger.log(
                    msg=f"Entered {fn.__name__} with args={args[1:] if is_method else args}, kwargs={kwargs}",
                    level=log_level
                )
            else:
                logger.log(
                    msg=f"Entered {fn.__name__}",
                    level=log_level
                )

            result = fn(*args, **kwargs)

            if is_print_output and result is not None:
                logger.log(
                    msg=f"Exited {fn.__name__} with result {result}",
                    level=log_level,
                )
            else:
                logger.log(
                    msg=f"Exited {fn.__name__}",
                    level=log_level
                )

            return result

        return wrapper

    return decor

用法:

 @log_in_out(is_method=False, is_print_input=False)
    def foo(a, b=5):
        return 3, a

Foo(2)—>打印

输入foo 输出结果为(3,2)的foo

    class A():
        @log_in_out(is_print_output=False)
        def bar(self, c, m, y):
            return c, 6

a = () A.bar (1,2, y=3)—>打印

输入bar with args=(1, 2), kwargs={y:3} 离开酒吧