我有一个熊猫数据框架如下:
itm Date Amount
67 420 2012-09-30 00:00:00 65211
68 421 2012-09-09 00:00:00 29424
69 421 2012-09-16 00:00:00 29877
70 421 2012-09-23 00:00:00 30990
71 421 2012-09-30 00:00:00 61303
72 485 2012-09-09 00:00:00 71781
73 485 2012-09-16 00:00:00 NaN
74 485 2012-09-23 00:00:00 11072
75 485 2012-09-30 00:00:00 113702
76 489 2012-09-09 00:00:00 64731
77 489 2012-09-16 00:00:00 NaN
当我尝试应用一个函数到金额列,我得到以下错误:
ValueError: cannot convert float NaN to integer
我尝试使用数学模块中的.isnan应用一个函数
我已经尝试了pandas .replace属性
我尝试了pandas 0.9中的.sparse data属性
我还尝试了在函数中if NaN == NaN语句。
我也看了这篇文章我如何替换NA值与零在一个R数据框架?同时看一些其他的文章。
我尝试过的所有方法都不起作用或不能识别NaN。
任何提示或解决方案将不胜感激。
已经有很多贡献了,但因为我是新来的,我仍然会提供意见。
在Pandas DataFrame中有两种方法将NaN值替换为0:
fillna():函数使用指定的方法填充NA/NaN值。
Replace (): df.replace()一个简单的方法,用于替换字符串,正则表达式,列表,字典
例子:
#NaN with zero on all columns
df2 = df.fillna(0)
#Using the inplace=True keyword in a pandas method changes the default behaviour.
df.fillna(0, inplace = True)
# multiple columns appraoch
df[["Student", "ID"]] = df[["Student", "ID"]].fillna(0)
最后是replace()方法:
df["Student"] = df["Student"].replace(np.nan, 0)
如果你想为一个特定的列填充NaN,你可以使用loc:
d1 = {"Col1" : ['A', 'B', 'C'],
"fruits": ['Avocado', 'Banana', 'NaN']}
d1= pd.DataFrame(d1)
output:
Col1 fruits
0 A Avocado
1 B Banana
2 C NaN
d1.loc[ d1.Col1=='C', 'fruits' ] = 'Carrot'
output:
Col1 fruits
0 A Avocado
1 B Banana
2 C Carrot
已经有很多贡献了,但因为我是新来的,我仍然会提供意见。
在Pandas DataFrame中有两种方法将NaN值替换为0:
fillna():函数使用指定的方法填充NA/NaN值。
Replace (): df.replace()一个简单的方法,用于替换字符串,正则表达式,列表,字典
例子:
#NaN with zero on all columns
df2 = df.fillna(0)
#Using the inplace=True keyword in a pandas method changes the default behaviour.
df.fillna(0, inplace = True)
# multiple columns appraoch
df[["Student", "ID"]] = df[["Student", "ID"]].fillna(0)
最后是replace()方法:
df["Student"] = df["Student"].replace(np.nan, 0)