我有一个熊猫DataFrame,其中包含一列字符串值。我需要根据部分字符串匹配来选择行。
类似于这个成语:
re.search(pattern, cell_in_question)
返回布尔值。我熟悉df[df['A']==“helloworld”]的语法,但似乎找不到一种方法来处理部分字符串匹配,比如“hello”。
我有一个熊猫DataFrame,其中包含一列字符串值。我需要根据部分字符串匹配来选择行。
类似于这个成语:
re.search(pattern, cell_in_question)
返回布尔值。我熟悉df[df['A']==“helloworld”]的语法,但似乎找不到一种方法来处理部分字符串匹配,比如“hello”。
当前回答
快速提示:如果要基于索引中包含的部分字符串进行选择,请尝试以下操作:
df['stridx']=df.index
df[df['stridx'].str.contains("Hello|Britain")]
其他回答
我在ipython笔记本电脑的macos上使用熊猫0.14.1。我尝试了上面的建议行:
df[df["A"].str.contains("Hello|Britain")]
并得到一个错误:
无法使用包含NA/NaN值的矢量进行索引
但当添加了“==True”条件时,效果非常好,如下所示:
df[df['A'].str.contains("Hello|Britain")==True]
快速提示:如果要基于索引中包含的部分字符串进行选择,请尝试以下操作:
df['stridx']=df.index
df[df['stridx'].str.contains("Hello|Britain")]
假设我们在数据帧df中有一个名为“ENTITY”的列。我们可以过滤df,以获得整个数据帧df,其中“实体”列的行不包含“DM”,方法如下:
mask = df['ENTITY'].str.contains('DM')
df = df.loc[~(mask)].copy(deep=True)
df[df['A'].str.contains("hello", case=False)]
假设您有以下DataFrame:
>>> df = pd.DataFrame([['hello', 'hello world'], ['abcd', 'defg']], columns=['a','b'])
>>> df
a b
0 hello hello world
1 abcd defg
您始终可以在lambda表达式中使用in运算符来创建筛选器。
>>> df.apply(lambda x: x['a'] in x['b'], axis=1)
0 True
1 False
dtype: bool
这里的技巧是在apply中使用axis=1选项,将元素逐行传递给lambda函数,而不是逐列传递。