Python编程语言中有哪些鲜为人知但很有用的特性?
尽量将答案限制在Python核心。
每个回答一个特征。
给出一个例子和功能的简短描述,而不仅仅是文档链接。
使用标题作为第一行标记该特性。
快速链接到答案:
参数解包
牙套
链接比较运算符
修饰符
可变默认参数的陷阱/危险
描述符
字典默认的.get值
所以测试
省略切片语法
枚举
其他/
函数作为iter()参数
生成器表达式
导入该
就地值交换
步进列表
__missing__物品
多行正则表达式
命名字符串格式化
嵌套的列表/生成器推导
运行时的新类型
.pth文件
ROT13编码
正则表达式调试
发送到发电机
交互式解释器中的制表符补全
三元表达式
试着/ / else除外
拆包+打印()函数
与声明
Python有“私有”变量
以双下划线开始而不是以双下划线结束的变量将成为私有变量,而且不仅仅是按照约定。实际上__var变成了_Classname__var,其中Classname是创建变量的类。它们不是继承的,也不能被覆盖。
>>> class A:
... def __init__(self):
... self.__var = 5
... def getvar(self):
... return self.__var
...
>>> a = A()
>>> a.__var
Traceback (most recent call last):
File "", line 1, in
AttributeError: A instance has no attribute '__var'
>>> a.getvar()
5
>>> dir(a)
['_A__var', '__doc__', '__init__', '__module__', 'getvar']
>>>
用sum()扁平化列表。
sum()内置函数可用于将__add__个列表放在一起,提供了一种方便的方法来将列表的列表扁平化:
Python 2.7.1 (r271:86832, May 27 2011, 21:41:45)
[GCC 4.2.1 (Apple Inc. build 5664)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> l = [[1, 2, 3], [4, 5], [6], [7, 8, 9]]
>>> sum(l, [])
[1, 2, 3, 4, 5, 6, 7, 8, 9]
只需少量的工作,线程模块就变得非常容易使用。此装饰器更改函数,使其在自己的线程中运行,返回占位符类实例,而不是常规结果。你可以通过检查placeolder来探测答案。结果或通过调用placeholder.awaitResult()来等待它。
def threadify(function):
"""
exceptionally simple threading decorator. Just:
>>> @threadify
... def longOperation(result):
... time.sleep(3)
... return result
>>> A= longOperation("A has finished")
>>> B= longOperation("B has finished")
A doesn't have a result yet:
>>> print A.result
None
until we wait for it:
>>> print A.awaitResult()
A has finished
we could also wait manually - half a second more should be enough for B:
>>> time.sleep(0.5); print B.result
B has finished
"""
class thr (threading.Thread,object):
def __init__(self, *args, **kwargs):
threading.Thread.__init__ ( self )
self.args, self.kwargs = args, kwargs
self.result = None
self.start()
def awaitResult(self):
self.join()
return self.result
def run(self):
self.result=function(*self.args, **self.kwargs)
return thr
threading.enumerate()提供了对系统中所有Thread对象的访问,sys._current_frames()返回系统中所有线程的当前堆栈帧,因此将这两者结合起来,你会得到Java风格的堆栈转储:
def dumpstacks(signal, frame):
id2name = dict([(th.ident, th.name) for th in threading.enumerate()])
code = []
for threadId, stack in sys._current_frames().items():
code.append("\n# Thread: %s(%d)" % (id2name[threadId], threadId))
for filename, lineno, name, line in traceback.extract_stack(stack):
code.append('File: "%s", line %d, in %s' % (filename, lineno, name))
if line:
code.append(" %s" % (line.strip()))
print "\n".join(code)
import signal
signal.signal(signal.SIGQUIT, dumpstacks)
在多线程python程序开始时执行此操作,您可以通过发送SIGQUIT随时访问线程的当前状态。你也可以选择信号。SIGUSR1或signal。sigusr2。
See