Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

你可以用类装饰函数——用类实例替换函数:

class countCalls(object):
    """ decorator replaces a function with a "countCalls" instance
    which behaves like the original function, but keeps track of calls

    >>> @countCalls
    ... def doNothing():
    ...     pass
    >>> doNothing()
    >>> doNothing()
    >>> print doNothing.timesCalled
    2
    """
    def __init__ (self, functionToTrack):
        self.functionToTrack = functionToTrack
        self.timesCalled = 0
    def __call__ (self, *args, **kwargs):
        self.timesCalled += 1
        return self.functionToTrack(*args, **kwargs)

其他回答

函数参数解包

可以使用*和**将列表或字典解包为函数参数。

例如:

def draw_point(x, y):
    # do some magic

point_foo = (3, 4)
point_bar = {'y': 3, 'x': 2}

draw_point(*point_foo)
draw_point(**point_bar)

非常有用的快捷方式,因为列表、元组和字典被广泛用作容器。

如果你在你的类上使用描述符,Python完全绕过__dict__键,这使得它成为一个存储这些值的好地方:

>>> class User(object):
...  def _get_username(self):
...   return self.__dict__['username']
...  def _set_username(self, value):
...   print 'username set'
...   self.__dict__['username'] = value
...  username = property(_get_username, _set_username)
...  del _get_username, _set_username
... 
>>> u = User()
>>> u.username = "foo"
username set
>>> u.__dict__
{'username': 'foo'}

这有助于保持dir()干净。

__getattr__ ()

getattr是一种创建泛型类的好方法,在编写API时尤其有用。例如,在FogBugz Python API中,getattr用于无缝地将方法调用传递给web服务:

class FogBugz:
    ...

    def __getattr__(self, name):
        # Let's leave the private stuff to Python
        if name.startswith("__"):
            raise AttributeError("No such attribute '%s'" % name)

        if not self.__handlerCache.has_key(name):
            def handler(**kwargs):
                return self.__makerequest(name, **kwargs)
            self.__handlerCache[name] = handler
        return self.__handlerCache[name]
    ...

当有人调用FogBugz.search(q='bug')时,他们实际上不会调用搜索方法。相反,getattr通过创建一个新函数来处理调用,该函数包装了makerequest方法,该方法将适当的HTTP请求发送给web API。任何错误都将由web服务分派并传递回用户。

对象数据模型

您可以为自己的类重写语言中的任何操作符。有关完整列表,请参阅本页。一些例子:

您可以重写任何运算符(* + - // / % ^ == < > <= >=。等等)。所有这些都是通过重写对象中的__mul__, __add__等来实现的。你甚至可以重写像__rmul__这样的东西来分别处理your_object*something_else和something_else*your_object.。是属性访问(a.b),并且可以通过使用__getattr__来重写以处理任意b。这里还包括一个使用__call__的(…)。 您可以创建自己的slice语法(a[stuff]),这可能非常复杂,与列表中使用的标准语法完全不同(numpy在其数组中有一个很好的例子,说明了这种功能的强大),使用您喜欢的、、:和…的任何组合,使用slice对象。 特别处理语言中许多关键字所发生的情况。包括del、in、import和not。 处理与对象一起调用许多内置函数时发生的情况。标准的__int__, __str__等会在这里,但__len__, __reversed__, __abs__和三个参数__pow__(用于模取幂)也会在这里。

使用关键字参数作为赋值

有时需要根据一个或多个参数构建一系列函数。然而,这很容易导致闭包都引用相同的对象和值:

funcs = [] 
for k in range(10):
     funcs.append( lambda: k)

>>> funcs[0]()
9
>>> funcs[7]()
9

可以通过将lambda表达式转换为仅依赖其参数的函数来避免这种行为。关键字参数存储绑定到它的当前值。函数调用不需要改变:

funcs = [] 
for k in range(10):
     funcs.append( lambda k = k: k)

>>> funcs[0]()
0
>>> funcs[7]()
7