Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

引用一个列表理解,因为它正在构建…

你可以引用一个列表推导式,因为它是由符号'_[1]'构建的。例如,下面的函数通过引用列表推导式对元素列表进行惟一化,而不改变它们的顺序。

def unique(my_list):
    return [x for x in my_list if x not in locals()['_[1]']]

其他回答

可以使用属性使类接口更加严格。

class C(object):
    def __init__(self, foo, bar):
        self.foo = foo # read-write property
        self.bar = bar # simple attribute

    def _set_foo(self, value):
        self._foo = value

    def _get_foo(self):
        return self._foo

    def _del_foo(self):
        del self._foo

    # any of fget, fset, fdel and doc are optional,
    # so you can make a write-only and/or delete-only property.
    foo = property(fget = _get_foo, fset = _set_foo,
                   fdel = _del_foo, doc = 'Hello, I am foo!')

class D(C):
    def _get_foo(self):
        return self._foo * 2

    def _set_foo(self, value):
        self._foo = value / 2

    foo = property(fget = _get_foo, fset = _set_foo,
                   fdel = C.foo.fdel, doc = C.foo.__doc__)

在Python 2.6和3.0中:

class C(object):
    def __init__(self, foo, bar):
        self.foo = foo # read-write property
        self.bar = bar # simple attribute

    @property
    def foo(self):
        '''Hello, I am foo!'''

        return self._foo

    @foo.setter
    def foo(self, value):
        self._foo = value

    @foo.deleter
    def foo(self):
        del self._foo

class D(C):
    @C.foo.getter
    def foo(self):
        return self._foo * 2

    @foo.setter
    def foo(self, value):
        self._foo = value / 2

要了解属性如何工作的更多信息,请参阅描述符。

Dict理解

>>> {i: i**2 for i in range(5)}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

Python文档

维基百科的条目

>>> x=[1,1,2,'a','a',3]
>>> y = [ _x for _x in x if not _x in locals()['_[1]'] ]
>>> y
[1, 2, 'a', 3]

"locals()['_[1]']"是正在创建的列表的"秘密名称"。当正在构建的列表状态影响后续构建决策时非常有用。

可读正则表达式

在Python中,您可以将正则表达式拆分为多行,命名匹配并插入注释。

示例详细语法(来自Python):

>>> pattern = """
... ^                   # beginning of string
... M{0,4}              # thousands - 0 to 4 M's
... (CM|CD|D?C{0,3})    # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
...                     #            or 500-800 (D, followed by 0 to 3 C's)
... (XC|XL|L?X{0,3})    # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
...                     #        or 50-80 (L, followed by 0 to 3 X's)
... (IX|IV|V?I{0,3})    # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I's),
...                     #        or 5-8 (V, followed by 0 to 3 I's)
... $                   # end of string
... """
>>> re.search(pattern, 'M', re.VERBOSE)

命名匹配示例(摘自正则表达式HOWTO)

>>> p = re.compile(r'(?P<word>\b\w+\b)')
>>> m = p.search( '(((( Lots of punctuation )))' )
>>> m.group('word')
'Lots'

由于字符串字面值的串联,你也可以在不使用re.VERBOSE的情况下详细地编写一个正则表达式。

>>> pattern = (
...     "^"                 # beginning of string
...     "M{0,4}"            # thousands - 0 to 4 M's
...     "(CM|CD|D?C{0,3})"  # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
...                         #            or 500-800 (D, followed by 0 to 3 C's)
...     "(XC|XL|L?X{0,3})"  # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
...                         #        or 50-80 (L, followed by 0 to 3 X's)
...     "(IX|IV|V?I{0,3})"  # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I's),
...                         #        or 5-8 (V, followed by 0 to 3 I's)
...     "$"                 # end of string
... )
>>> print pattern
"^M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$"

一些内置的收藏夹,map(), reduce()和filter()。所有这些都非常快速和强大。