我如何在0和1之间迭代0.1步?

这表示step参数不能为零:

for i in range(0, 1, 0.1):
    print(i)

当前回答

增加循环的i的大小,然后在需要时减少它。

for i * 100 in range(0, 100, 10):
    print i / 100.0

编辑:老实说,我不记得为什么我认为这会在语法上工作

for i in range(0, 11, 1):
    print i / 10.0

这应该有期望的输出。

其他回答

与R的seq函数类似,这个函数在给定正确的步长值的情况下以任意顺序返回一个序列。最后一个值等于停止值。

def seq(start, stop, step=1):
    n = int(round((stop - start)/float(step)))
    if n > 1:
        return([start + step*i for i in range(n+1)])
    elif n == 1:
        return([start])
    else:
        return([])

结果

seq(1, 5, 0.5)

[1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]

seq(10, 0, -1)

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

seq(10, 0, -2)

[10, 8, 6, 4, 2, 0]

seq(1, 1)

[1]

最佳解决方案:没有舍入误差

>>> step = .1
>>> N = 10     # number of data points
>>> [ x / pow(step, -1) for x in range(0, N + 1) ]

[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

或者,对于一组范围而不是一组数据点(例如,连续函数),使用:

>>> step = .1
>>> rnge = 1     # NOTE range = 1, i.e. span of data points
>>> N = int(rnge / step
>>> [ x / pow(step,-1) for x in range(0, N + 1) ]

[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

实现一个函数:将x / pow(step, -1)替换为f(x / pow(step, -1)),并定义f。 例如:

>>> import math
>>> def f(x):
        return math.sin(x)

>>> step = .1
>>> rnge = 1     # NOTE range = 1, i.e. span of data points
>>> N = int(rnge / step)
>>> [ f( x / pow(step,-1) ) for x in range(0, N + 1) ]

[0.0, 0.09983341664682815, 0.19866933079506122, 0.29552020666133955, 0.3894183423086505, 
 0.479425538604203, 0.5646424733950354, 0.644217687237691, 0.7173560908995228,
 0.7833269096274834, 0.8414709848078965]

法兰(开始、停止、精度)

def frange(a,b,i):
    p = 10**i
    sr = a*p
    er = (b*p) + 1
    p = float(p)
    return map(lambda x: x/p, xrange(sr,er))

In >frange(-1,1,1)

Out>[-1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

我只是一个初学者,但我有同样的问题,当模拟一些计算。这是我如何试图解决这个问题,这似乎是工作与十进制步骤。

我也很懒,所以我发现很难写我自己的范围函数。

基本上,我所做的就是将xrange(0.0, 1.0, 0.01)更改为xrange(0, 100, 1),并在循环中使用除100.0。 我也担心,是否会有舍入错误。所以我决定测试一下,是否有。现在我听说,如果一个计算中的0.01不完全是浮点数0.01比较它们应该返回False(如果我错了,请告诉我)。

所以我决定通过运行一个简短的测试来测试我的解决方案是否适用于我的范围:

for d100 in xrange(0, 100, 1):
    d = d100 / 100.0
    fl = float("0.00"[:4 - len(str(d100))] + str(d100))
    print d, "=", fl , d == fl

每一个都输出True。

现在,如果我完全错了,请告诉我。

下面是一个使用itertools的解决方案:

import itertools

def seq(start, end, step):
    if step == 0:
        raise ValueError("step must not be 0")
    sample_count = int(abs(end - start) / step)
    return itertools.islice(itertools.count(start, step), sample_count)

使用的例子:

for i in seq(0, 1, 0.1):
    print(i)