我如何在0和1之间迭代0.1步?

这表示step参数不能为零:

for i in range(0, 1, 0.1):
    print(i)

当前回答

令人惊讶的是,在Python 3文档中还没有人提到推荐的解决方案:

参见: linspace菜谱展示了如何实现适用于浮点应用程序的惰性版本的range。

一旦定义,recipe就很容易使用,不需要numpy或任何其他外部库,只需要numpy.linspace()这样的函数。注意,第三个num参数指定所需值的数量,而不是step参数,例如:

print(linspace(0, 10, 5))
# linspace(0, 10, 5)
print(list(linspace(0, 10, 5)))
# [0.0, 2.5, 5.0, 7.5, 10]

下面我引用了Andrew Barnert的完整Python 3配方的修改版本:

import collections.abc
import numbers

class linspace(collections.abc.Sequence):
    """linspace(start, stop, num) -> linspace object

    Return a virtual sequence of num numbers from start to stop (inclusive).

    If you need a half-open range, use linspace(start, stop, num+1)[:-1].
    """
    def __init__(self, start, stop, num):
        if not isinstance(num, numbers.Integral) or num <= 1:
            raise ValueError('num must be an integer > 1')
        self.start, self.stop, self.num = start, stop, num
        self.step = (stop-start)/(num-1)
    def __len__(self):
        return self.num
    def __getitem__(self, i):
        if isinstance(i, slice):
            return [self[x] for x in range(*i.indices(len(self)))]
        if i < 0:
            i = self.num + i
        if i >= self.num:
            raise IndexError('linspace object index out of range')
        if i == self.num-1:
            return self.stop
        return self.start + i*self.step
    def __repr__(self):
        return '{}({}, {}, {})'.format(type(self).__name__,
                                       self.start, self.stop, self.num)
    def __eq__(self, other):
        if not isinstance(other, linspace):
            return False
        return ((self.start, self.stop, self.num) ==
                (other.start, other.stop, other.num))
    def __ne__(self, other):
        return not self==other
    def __hash__(self):
        return hash((type(self), self.start, self.stop, self.num))

其他回答

我认为NumPy有点过头了。

[p/10 for p in range(0, 10)]
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

一般来说,要做阶跃1/x直到y

x=100
y=2
[p/x for p in range(0, int(x*y))]
[0.0, 0.01, 0.02, 0.03, ..., 1.97, 1.98, 1.99]

(1/x在我测试时产生的舍入噪声更少)。

sign = lambda x: (1, -1)[x < 0]
def frange(start, stop, step):
    i = 0
    r=len(str(step).split('.')[-1])
    args=(start,stop,step)
    if not step :return []
    if all(int(i)==float(i) for i in args):
        start,stop,step=map(int,args)
    if sign(step)==1:
        while start + i * step < stop:
            yield round(start + i * step,r)
            i += 1
    else:
        while start + i * step > stop:
            yield round(start + i * step,r)
            i += 1

法兰(开始、停止、精度)

def frange(a,b,i):
    p = 10**i
    sr = a*p
    er = (b*p) + 1
    p = float(p)
    return map(lambda x: x/p, xrange(sr,er))

In >frange(-1,1,1)

Out>[-1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

与其直接使用小数点,不如用你想要多少点来表示,这要安全得多。否则,浮点舍入错误很可能会给您一个错误的结果。

使用NumPy库中的linspace函数(它不是标准库的一部分,但相对容易获得)。Linspace需要返回一些点,还允许你指定是否包含正确的端点:

>>> np.linspace(0,1,11)
array([ 0. ,  0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9,  1. ])
>>> np.linspace(0,1,10,endpoint=False)
array([ 0. ,  0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9])

如果你真的想使用浮点步长值,可以使用numpy.arange:

>>> import numpy as np
>>> np.arange(0.0, 1.0, 0.1)
array([ 0. ,  0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9])

但是浮点舍入错误会导致问题。下面是一个简单的例子,舍入错误导致range生成一个长度为4的数组,而它应该只生成3个数字:

>>> numpy.arange(1, 1.3, 0.1)
array([1. , 1.1, 1.2, 1.3])

最佳解决方案:没有舍入误差

>>> step = .1
>>> N = 10     # number of data points
>>> [ x / pow(step, -1) for x in range(0, N + 1) ]

[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

或者,对于一组范围而不是一组数据点(例如,连续函数),使用:

>>> step = .1
>>> rnge = 1     # NOTE range = 1, i.e. span of data points
>>> N = int(rnge / step
>>> [ x / pow(step,-1) for x in range(0, N + 1) ]

[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

实现一个函数:将x / pow(step, -1)替换为f(x / pow(step, -1)),并定义f。 例如:

>>> import math
>>> def f(x):
        return math.sin(x)

>>> step = .1
>>> rnge = 1     # NOTE range = 1, i.e. span of data points
>>> N = int(rnge / step)
>>> [ f( x / pow(step,-1) ) for x in range(0, N + 1) ]

[0.0, 0.09983341664682815, 0.19866933079506122, 0.29552020666133955, 0.3894183423086505, 
 0.479425538604203, 0.5646424733950354, 0.644217687237691, 0.7173560908995228,
 0.7833269096274834, 0.8414709848078965]