我想将两个词典融入一个新的词典。

x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)

>>> z
{'a': 1, 'b': 3, 'c': 4}

每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。


当前回答

x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
z = dict(x.items() + y.items())
print z

对于两个字典中的关键物品(“b”),您可以通过将最后一个放在输出中来控制哪个。

其他回答

我想要一些类似的东西,但有能力说明双键中的值是如何合并的,所以我打破了这个(但没有重量测试)。

def merge(d1, d2, merge_fn=lambda x,y:y):
    """
    Merges two dictionaries, non-destructively, combining 
    values on duplicate keys as defined by the optional merge
    function.  The default behavior replaces the values in d1
    with corresponding values in d2.  (There is no other generally
    applicable merge strategy, but often you'll have homogeneous 
    types in your dicts, so specifying a merge technique can be 
    valuable.)

    Examples:

    >>> d1
    {'a': 1, 'c': 3, 'b': 2}
    >>> merge(d1, d1)
    {'a': 1, 'c': 3, 'b': 2}
    >>> merge(d1, d1, lambda x,y: x+y)
    {'a': 2, 'c': 6, 'b': 4}

    """
    result = dict(d1)
    for k,v in d2.iteritems():
        if k in result:
            result[k] = merge_fn(result[k], v)
        else:
            result[k] = v
    return result

在 Python 3.9 中

基于PEP 584的,Python的新版本引入了两个新的词典操作器:union(<unk>)和in-place union(<unk>=)。您可以使用<unk>来结合两个词典,而<unk>=将更新一个词典:

>>> pycon = {2016: "Portland", 2018: "Cleveland"}
>>> europython = {2017: "Rimini", 2018: "Edinburgh", 2019: "Basel"}

>>> pycon | europython
{2016: 'Portland', 2018: 'Edinburgh', 2017: 'Rimini', 2019: 'Basel'}

>>> pycon |= europython
>>> pycon
{2016: 'Portland', 2018: 'Edinburgh', 2017: 'Rimini', 2019: 'Basel'}

使用<unk>的优点之一是它在不同的字典类型上工作,并通过合并保持类型:

>>> from collections import defaultdict
>>> europe = defaultdict(lambda: "", {"Norway": "Oslo", "Spain": "Madrid"})
>>> africa = defaultdict(lambda: "", {"Egypt": "Cairo", "Zimbabwe": "Harare"})

>>> europe | africa
defaultdict(<function <lambda> at 0x7f0cb42a6700>,
  {'Norway': 'Oslo', 'Spain': 'Madrid', 'Egypt': 'Cairo', 'Zimbabwe': 'Harare'})

>>> {**europe, **africa}
{'Norway': 'Oslo', 'Spain': 'Madrid', 'Egypt': 'Cairo', 'Zimbabwe': 'Harare'}

您可以使用默认定义,当您想要有效处理丢失的密钥时,请注意, <unk> 保留默认定义,而 {**europe, **africa} 不。

基本用途是更新现有字典,类似于.update():

>>> libraries = {
...     "collections": "Container datatypes",
...     "math": "Mathematical functions",
... }
>>> libraries |= {"zoneinfo": "IANA time zone support"}
>>> libraries
{'collections': 'Container datatypes', 'math': 'Mathematical functions',
 'zoneinfo': 'IANA time zone support'}

当您将字典与字典合并时,两个字典都必须具有适当的字典类型,另一方面,现场运营商(字典=)很高兴与任何字典类似的数据结构合作:

>>> libraries |= [("graphlib", "Functionality for graph-like structures")]
>>> libraries
{'collections': 'Container datatypes', 'math': 'Mathematical functions',
 'zoneinfo': 'IANA time zone support',
 'graphlib': 'Functionality for graph-like structures'}

z1 = dict(x.items() + y.items())
z2 = dict(x, **y)

在我的机器上,至少(一个相当常见的x86_64运行Python 2.5.2),替代Z2不仅更短,更简单,而且更快。

% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z1=dict(x.items() + y.items())'
100000 loops, best of 3: 5.67 usec per loop
% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z2=dict(x, **y)' 
100000 loops, best of 3: 1.53 usec per loop

示例2:不超越的字典,将252条短线地图到整条,反之亦然:

% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z1=dict(x.items() + y.items())'
1000 loops, best of 3: 260 usec per loop
% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z2=dict(x, **y)'               
10000 loops, best of 3: 26.9 usec per loop

z2赢得了大约10的因素,这在我的书中是一个相当大的胜利!

在比较这两个之后,我想知道 z1 的不良性能是否可以归功于构建两个项目列表的顶端,这反过来导致我想知道这个变量是否会更好地工作:

from itertools import chain
z3 = dict(chain(x.iteritems(), y.iteritems()))

% python -m timeit -s 'from itertools import chain; from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z3=dict(chain(x.iteritems(), y.iteritems()))'
10000 loops, best of 3: 66 usec per loop

z0 = dict(x)
z0.update(y)

% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z0=dict(x); z0.update(y)'
10000 loops, best of 3: 26.9 usec per loop

你也可以这样写作

z0 = x.copy()
z0.update(y)

正如托尼所做的那样,但(不令人惊讶)评分的差异显然没有对性能的测量效应。 使用任何人看起来对你是正确的。

重复 / 深度更新 a dict

def deepupdate(original, update):
    """
    Recursively update a dict.
    Subdict's won't be overwritten but also updated.
    """
    for key, value in original.iteritems(): 
        if key not in update:
            update[key] = value
        elif isinstance(value, dict):
            deepupdate(value, update[key]) 
    return update

示威:

pluto_original = {
    'name': 'Pluto',
    'details': {
        'tail': True,
        'color': 'orange'
    }
}

pluto_update = {
    'name': 'Pluutoo',
    'details': {
        'color': 'blue'
    }
}

print deepupdate(pluto_original, pluto_update)

结果:

{
    'name': 'Pluutoo',
    'details': {
        'color': 'blue',
        'tail': True
    }
}

谢谢Radnaw的编辑。

这个问题被标签为Python-3x,但考虑到这是一个相对较新的补充,并且最受欢迎的,接受的答案与Python 2.x解决方案广泛处理,我敢添加一个线条,引用一个令人兴奋的功能的Python 2.x列表理解,即名字泄漏。

$ python2
Python 2.7.13 (default, Jan 19 2017, 14:48:08) 
[GCC 6.3.0 20170118] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> [z.update(d) for z in [{}] for d in (x, y)]
[None, None]
>>> z
{'a': 1, 'c': 11, 'b': 10}
>>> ...

我很高兴说上面的内容不再在任何Python 3版本上工作。