在Python多处理库中,是否有支持多个参数的pool.map变体?

import multiprocessing

text = "test"

def harvester(text, case):
    X = case[0]
    text + str(X)

if __name__ == '__main__':
    pool = multiprocessing.Pool(processes=6)
    case = RAW_DATASET
    pool.map(harvester(text, case), case, 1)
    pool.close()
    pool.join()

当前回答

这是我用来将多个参数传递给pool.imap fork中使用的单参数函数的例程的示例:

from multiprocessing import Pool

# Wrapper of the function to map:
class makefun:
    def __init__(self, var2):
        self.var2 = var2
    def fun(self, i):
        var2 = self.var2
        return var1[i] + var2

# Couple of variables for the example:
var1 = [1, 2, 3, 5, 6, 7, 8]
var2 = [9, 10, 11, 12]

# Open the pool:
pool = Pool(processes=2)

# Wrapper loop
for j in range(len(var2)):
    # Obtain the function to map
    pool_fun = makefun(var2[j]).fun

    # Fork loop
    for i, value in enumerate(pool.imap(pool_fun, range(len(var1))), 0):
        print(var1[i], '+' ,var2[j], '=', value)

# Close the pool
pool.close()

其他回答

对我来说,以下是一个简单明了的解决方案:

from multiprocessing.pool import ThreadPool
from functools import partial
from time import sleep
from random import randint

def dosomething(var,s):
    sleep(randint(1,5))
    print(var)
    return var + s

array = ["a", "b", "c", "d", "e"]
with ThreadPool(processes=5) as pool:
    resp_ = pool.map(partial(dosomething,s="2"), array)
    print(resp_)

输出:

a
b
d
e
c
['a2', 'b2', 'c2', 'd2', 'e2']

答案取决于版本和情况。最近版本的Python(从3.3开始)的最一般的答案首先由J.F.Sebastian在下面描述。1它使用Pool.starmap方法,接受一系列参数元组。然后,它会自动将每个元组中的参数解包,并将它们传递给给定的函数:

import multiprocessing
from itertools import product

def merge_names(a, b):
    return '{} & {}'.format(a, b)

if __name__ == '__main__':
    names = ['Brown', 'Wilson', 'Bartlett', 'Rivera', 'Molloy', 'Opie']
    with multiprocessing.Pool(processes=3) as pool:
        results = pool.starmap(merge_names, product(names, repeat=2))
    print(results)

# Output: ['Brown & Brown', 'Brown & Wilson', 'Brown & Bartlett', ...

对于早期版本的Python,您需要编写一个助手函数来显式地解包参数。如果要与一起使用,还需要编写一个包装器,将Pool转换为上下文管理器。(感谢穆恩指出了这一点。)

import multiprocessing
from itertools import product
from contextlib import contextmanager

def merge_names(a, b):
    return '{} & {}'.format(a, b)

def merge_names_unpack(args):
    return merge_names(*args)

@contextmanager
def poolcontext(*args, **kwargs):
    pool = multiprocessing.Pool(*args, **kwargs)
    yield pool
    pool.terminate()

if __name__ == '__main__':
    names = ['Brown', 'Wilson', 'Bartlett', 'Rivera', 'Molloy', 'Opie']
    with poolcontext(processes=3) as pool:
        results = pool.map(merge_names_unpack, product(names, repeat=2))
    print(results)

# Output: ['Brown & Brown', 'Brown & Wilson', 'Brown & Bartlett', ...

在更简单的情况下,使用固定的第二个参数,也可以使用partial,但仅在Python 2.7+中使用。

import multiprocessing
from functools import partial
from contextlib import contextmanager

@contextmanager
def poolcontext(*args, **kwargs):
    pool = multiprocessing.Pool(*args, **kwargs)
    yield pool
    pool.terminate()

def merge_names(a, b):
    return '{} & {}'.format(a, b)

if __name__ == '__main__':
    names = ['Brown', 'Wilson', 'Bartlett', 'Rivera', 'Molloy', 'Opie']
    with poolcontext(processes=3) as pool:
        results = pool.map(partial(merge_names, b='Sons'), names)
    print(results)

# Output: ['Brown & Sons', 'Wilson & Sons', 'Bartlett & Sons', ...

1.这大部分都是由他的答案激发的,而他的答案很可能应该被接受。但由于这本书一直停留在顶端,似乎最好为未来读者改进它。

另一种方法是将列表列表传递给单参数例程:

import os
from multiprocessing import Pool

def task(args):
    print "PID =", os.getpid(), ", arg1 =", args[0], ", arg2 =", args[1]

pool = Pool()

pool.map(task, [
        [1,2],
        [3,4],
        [5,6],
        [7,8]
    ])

然后可以用自己喜欢的方法构造一个参数列表。

您可以使用以下两个函数,以避免为每个新函数编写包装器:

import itertools
from multiprocessing import Pool

def universal_worker(input_pair):
    function, args = input_pair
    return function(*args)

def pool_args(function, *args):
    return zip(itertools.repeat(function), zip(*args))

将函数函数与参数arg_0、arg_1和arg_2的列表一起使用,如下所示:

pool = Pool(n_core)
list_model = pool.map(universal_worker, pool_args(function, arg_0, arg_1, arg_2)
pool.close()
pool.join()

这是我用来将多个参数传递给pool.imap fork中使用的单参数函数的例程的示例:

from multiprocessing import Pool

# Wrapper of the function to map:
class makefun:
    def __init__(self, var2):
        self.var2 = var2
    def fun(self, i):
        var2 = self.var2
        return var1[i] + var2

# Couple of variables for the example:
var1 = [1, 2, 3, 5, 6, 7, 8]
var2 = [9, 10, 11, 12]

# Open the pool:
pool = Pool(processes=2)

# Wrapper loop
for j in range(len(var2)):
    # Obtain the function to map
    pool_fun = makefun(var2[j]).fun

    # Fork loop
    for i, value in enumerate(pool.imap(pool_fun, range(len(var1))), 0):
        print(var1[i], '+' ,var2[j], '=', value)

# Close the pool
pool.close()