如果我有一个具有以下列的数据框架:

1. NAME                                     object
2. On_Time                                      object
3. On_Budget                                    object
4. %actual_hr                                  float64
5. Baseline Start Date                  datetime64[ns]
6. Forecast Start Date                  datetime64[ns] 

我想能够说:对于这个数据框架,给我一个列的类型'对象'或类型'datetime'的列表?

我有一个函数,将数字('float64')转换为两个小数点后的位置,我想使用这个特定类型的数据帧列的列表,并通过这个函数将它们全部转换为2dp。

也许是这样的:

For c in col_list: if c.dtype = "Something"
list[]
List.append(c)?

当前回答

如果6年后你仍然有这个问题,这应该可以解决它:)

cols = [c for c in df.columns if df[c].dtype in ['object', 'datetime64[ns]']]

其他回答

许多已发布的解决方案都使用df。Select_dtypes会不必要地创建一个临时的中间数据帧。如果你想要的只是“非数字类型(不是float32/int64/complex128/等等)的列的列表,只需执行其中一个(如果你只想要数字类型,则删除“not”):

import numpy as np
[c for c in df.columns if not np.issubdtype(df[c].dtype, np.number)]
from pandas.api.types import is_numeric_dtype
[c for c in df.columns if not is_numeric_dtype(c)]

注意:如果你想区分浮点数(float32/float64)与整数和复数,那么你可以使用np。浮动而不是np。上面两个解中的第一个或者下面两个解中的第一个。

如果你想让结果是pd。索引,而不是像上面那样只是列名字符串列表,这里有两种方法(第一种是基于@juanpa.arrivillaga):

import numpy as np
df.columns[[not np.issubdtype(dt, np.number) for dt in df.dtypes]]
from pandas.api.types import is_numeric_dtype
df.columns[[not is_numeric_dtype(c) for c in df.columns]]

其他一些方法可能会将bool列视为数值类型,但上面的解决方案不会这样做(使用numpy 1.22.3 / pandas 1.4.2测试)。

使用df.info(verbose=True),其中df是一个pandas datafarme,默认为verbose=False

我想出了这个三句话。

本质上,它是这样做的:

获取列名及其各自的数据类型。 我可以选择将它输出到csv。


inp = pd.read_csv('filename.csv') # read input. Add read_csv arguments as needed
columns = pd.DataFrame({'column_names': inp.columns, 'datatypes': inp.dtypes})
columns.to_csv(inp+'columns_list.csv', encoding='utf-8') # encoding is optional

这使得我在尝试动态生成模式时更加容易。希望这能有所帮助

list(df.select_dtypes(['object']).columns)

这应该能奏效

从pandas v0.14.1开始,可以使用select_dtypes()按dtype选择列

In [2]: df = pd.DataFrame({'NAME': list('abcdef'),
    'On_Time': [True, False] * 3,
    'On_Budget': [False, True] * 3})

In [3]: df.select_dtypes(include=['bool'])
Out[3]:
  On_Budget On_Time
0     False    True
1      True   False
2     False    True
3      True   False
4     False    True
5      True   False

In [4]: mylist = list(df.select_dtypes(include=['bool']).columns)

In [5]: mylist
Out[5]: ['On_Budget', 'On_Time']