如果我有一个具有以下列的数据框架:

1. NAME                                     object
2. On_Time                                      object
3. On_Budget                                    object
4. %actual_hr                                  float64
5. Baseline Start Date                  datetime64[ns]
6. Forecast Start Date                  datetime64[ns] 

我想能够说:对于这个数据框架,给我一个列的类型'对象'或类型'datetime'的列表?

我有一个函数,将数字('float64')转换为两个小数点后的位置,我想使用这个特定类型的数据帧列的列表,并通过这个函数将它们全部转换为2dp。

也许是这样的:

For c in col_list: if c.dtype = "Something"
list[]
List.append(c)?

当前回答

df = pd.DataFrame({'float': [1.0],
                   'int': [1],
                   'bool_1': [False],
                   'datetime': [pd.Timestamp('20180310')],
                   'bool_2': [True],
                   'string': ['foo']})
df.dtypes

# float              float64
# int                  int64
# bool_1                bool
# datetime    datetime64[ns]
# bool_2                bool
# string              object
# dtype: object


[column for column, is_type in (df.dtypes==bool).items() if is_type]
# ['bool_1', 'bool_2']

其他回答

使用df.info(verbose=True),其中df是一个pandas datafarme,默认为verbose=False

我使用infer_objects()

文档字符串:尝试为对象列推断更好的dtype。 尝试对对象类型的列进行软转换,保留非对象 不可转换列不变。推理规则是相同的 与正常的系列/数据框架构建过程一样。

.dtypes df.infer_objects ()

list(df.select_dtypes(['object']).columns)

这应该能奏效

使用dtype将为您提供所需的列的数据类型:

dataframe['column1'].dtype

如果你想一次知道所有列的数据类型,你可以使用dtype的复数作为dtypes:

dataframe.dtypes

如果你想要一个只有对象列的列表,你可以这样做:

non_numerics = [x for x in df.columns \
                if not (df[x].dtype == np.float64 \
                        or df[x].dtype == np.int64)]

然后如果你想要得到另一个数字列表

numerics = [x for x in df.columns if x not in non_numerics]