我在r中有一个很大的性能问题。我写了一个迭代data.frame对象的函数。它只是简单地向data.frame添加一个新列并累积一些东西。(操作简单)。data.frame大约有850K行。我的电脑还在工作(大约10小时了),我不知道运行时间。
dayloop2 <- function(temp){
for (i in 1:nrow(temp)){
temp[i,10] <- i
if (i > 1) {
if ((temp[i,6] == temp[i-1,6]) & (temp[i,3] == temp[i-1,3])) {
temp[i,10] <- temp[i,9] + temp[i-1,10]
} else {
temp[i,10] <- temp[i,9]
}
} else {
temp[i,10] <- temp[i,9]
}
}
names(temp)[names(temp) == "V10"] <- "Kumm."
return(temp)
}
有什么办法可以加快这次行动吗?
通过使用索引或嵌套的ifelse()语句跳过循环,可以更快地实现这一点。
idx <- 1:nrow(temp)
temp[,10] <- idx
idx1 <- c(FALSE, (temp[-nrow(temp),6] == temp[-1,6]) & (temp[-nrow(temp),3] == temp[-1,3]))
temp[idx1,10] <- temp[idx1,9] + temp[which(idx1)-1,10]
temp[!idx1,10] <- temp[!idx1,9]
temp[1,10] <- temp[1,9]
names(temp)[names(temp) == "V10"] <- "Kumm."
通过使用索引或嵌套的ifelse()语句跳过循环,可以更快地实现这一点。
idx <- 1:nrow(temp)
temp[,10] <- idx
idx1 <- c(FALSE, (temp[-nrow(temp),6] == temp[-1,6]) & (temp[-nrow(temp),3] == temp[-1,3]))
temp[idx1,10] <- temp[idx1,9] + temp[which(idx1)-1,10]
temp[!idx1,10] <- temp[!idx1,9]
temp[1,10] <- temp[1,9]
names(temp)[names(temp) == "V10"] <- "Kumm."
在R中,您通常可以通过使用apply族函数来加速循环处理(在您的示例中,可能是复制)。看一下提供进度条的plyr包。
另一种选择是完全避免循环,用向量化算法代替它们。我不确定你到底在做什么,但你可能可以将你的函数一次性应用到所有行:
temp[1:nrow(temp), 10] <- temp[1:nrow(temp), 9] + temp[0:(nrow(temp)-1), 10]
这将会快得多,然后你可以用你的条件过滤行:
cond.i <- (temp[i, 6] == temp[i-1, 6]) & (temp[i, 3] == temp[i-1, 3])
temp[cond.i, 10] <- temp[cond.i, 9]
向量化算术需要更多的时间和思考问题,但有时可以节省几个数量级的执行时间。
这里的答案很好。有一个小方面没有被提及,那就是这个问题说的是“我的电脑还在工作(现在大约10小时了),我不知道运行时间”。在开发时,我总是将以下代码放入循环中,以了解更改如何影响速度,并监视完成所需的时间。
dayloop2 <- function(temp){
for (i in 1:nrow(temp)){
cat(round(i/nrow(temp)*100,2),"% \r") # prints the percentage complete in realtime.
# do stuff
}
return(blah)
}
也可以使用lapply。
dayloop2 <- function(temp){
temp <- lapply(1:nrow(temp), function(i) {
cat(round(i/nrow(temp)*100,2),"% \r")
#do stuff
})
return(temp)
}
如果循环中的函数非常快,但循环的数量很大,那么可以考虑偶尔打印一次,因为打印到控制台本身会有开销。如。
dayloop2 <- function(temp){
for (i in 1:nrow(temp)){
if(i %% 100 == 0) cat(round(i/nrow(temp)*100,2),"% \r") # prints every 100 times through the loop
# do stuff
}
return(temp)
}
处理数据。表是一个可行的选择:
n <- 1000000
df <- as.data.frame(matrix(sample(1:10, n*9, TRUE), n, 9))
colnames(df) <- paste("col", 1:9, sep = "")
library(data.table)
dayloop2.dt <- function(df) {
dt <- data.table(df)
dt[, Kumm. := {
res <- .I;
ifelse (res > 1,
ifelse ((col6 == shift(col6, fill = 0)) & (col3 == shift(col3, fill = 0)) ,
res <- col9 + shift(res)
, # else
res <- col9
)
, # else
res <- col9
)
}
,]
res <- data.frame(dt)
return (res)
}
res <- dayloop2.dt(df)
m <- microbenchmark(dayloop2.dt(df), times = 100)
#Unit: milliseconds
# expr min lq mean median uq max neval
#dayloop2.dt(df) 436.4467 441.02076 578.7126 503.9874 575.9534 966.1042 10
如果忽略条件过滤可能带来的收益,它会非常快。显然,如果您可以在数据子集上进行计算,则会有所帮助。
加速R代码的一般策略
首先,弄清楚慢的部分到底在哪里。没有必要优化运行速度不慢的代码。对于少量的代码,简单地思考一下就可以了。如果失败了,RProf和类似的分析工具可能会有所帮助。
一旦你找到了瓶颈,考虑更有效的算法来做你想做的事情。如果可能,计算应该只运行一次,因此:
存储结果并访问它们,而不是重复地重新计算
从循环中取出非依赖于循环的计算
避免不必要的计算(例如,不要使用固定搜索的正则表达式)
使用更有效的函数可以产生中等或较大的速度增益。例如,paste0会产生很小的效率提高,而. colsum()及其相关项会产生更明显的效率提高。Mean特别慢。
这样你就可以避免一些特别常见的问题:
Cbind会很快让你慢下来。
初始化数据结构,然后填充它们,而不是逐个展开它们
时间。
即使使用预分配,您也可以切换到按引用传递方法而不是按值传递方法,但这样做可能不值得这么麻烦。
看看R地狱更多的陷阱要避免。
尝试更好的向量化,这通常有帮助,但并不总是有帮助。在这方面,固有的向量化命令,如ifelse、diff等,将比apply命令系列提供更多的改进(对于编写良好的循环,apply命令系列几乎没有提高速度)。
您还可以尝试为R函数提供更多信息。例如,使用vapply而不是sapply,并在读入基于文本的数据时指定colClasses。速度的增加取决于你消除了多少猜测。
接下来,考虑优化的包:数据。在数据操作和读取大量数据(fread)时,表包可以在可能的情况下产生巨大的速度增益。
接下来,尝试通过调用R的更有效的方法来提高速度:
Compile your R script. Or use the Ra and jit packages in concert for just-in-time compilation (Dirk has an example in this presentation).
Make sure you're using an optimized BLAS. These provide across-the-board speed gains. Honestly, it's a shame that R doesn't automatically use the most efficient library on install. Hopefully Revolution R will contribute the work that they've done here back to the overall community.
Radford Neal has done a bunch of optimizations, some of which were adopted into R Core, and many others which were forked off into pqR.
最后,如果以上所有方法仍然不能让您达到所需的速度,您可能需要使用更快的语言来处理速度较慢的代码片段。Rcpp和内联的组合使得用c++代码替换算法中最慢的部分特别容易。例如,这里是我第一次尝试这样做,它甚至击败了高度优化的R解。
如果在这之后你仍然有麻烦,你只是需要更多的计算能力。看看并行化(http://cran.r-project.org/web/views/HighPerformanceComputing.html)或者甚至是基于gpu的解决方案(gpu-tools)。
其他指引的连结
http://www.noamross.net/blog/2013/4/25/faster-talk.html