I am opening a file which has 100,000 URL's. I need to send an HTTP request to each URL and print the status code. I am using Python 2.6, and so far looked at the many confusing ways Python implements threading/concurrency. I have even looked at the python concurrence library, but cannot figure out how to write this program correctly. Has anyone come across a similar problem? I guess generally I need to know how to perform thousands of tasks in Python as fast as possible - I suppose that means 'concurrently'.
当前回答
如果您希望获得尽可能好的性能,您可能会考虑使用异步I/O而不是线程。与成千上万个操作系统线程相关的开销是不小的,Python解释器内的上下文切换甚至增加了更多的开销。线程当然可以完成工作,但我怀疑异步路由将提供更好的整体性能。
具体来说,我建议使用Twisted库中的异步web客户端(http://www.twistedmatrix.com)。它有一个公认的陡峭的学习曲线,但一旦你很好地掌握了Twisted的异步编程风格,它就很容易使用。
Twisted的异步web客户端API的HowTo可以在以下地址找到:
http://twistedmatrix.com/documents/current/web/howto/client.html
其他回答
Scrapy框架将快速和专业地解决您的问题。它还将缓存所有请求,以便稍后可以重新运行失败的请求。
将该脚本保存为quotes_spider.py。
# quote_spiders.py
import json
import string
import scrapy
from scrapy.crawler import CrawlerProcess
from scrapy.item import Item, Field
class TextCleaningPipeline(object):
def _clean_text(self, text):
text = text.replace('“', '').replace('”', '')
table = str.maketrans({key: None for key in string.punctuation})
clean_text = text.translate(table)
return clean_text.lower()
def process_item(self, item, spider):
item['text'] = self._clean_text(item['text'])
return item
class JsonWriterPipeline(object):
def open_spider(self, spider):
self.file = open(spider.settings['JSON_FILE'], 'a')
def close_spider(self, spider):
self.file.close()
def process_item(self, item, spider):
line = json.dumps(dict(item)) + "\n"
self.file.write(line)
return item
class QuoteItem(Item):
text = Field()
author = Field()
tags = Field()
spider = Field()
class QuoteSpider(scrapy.Spider):
name = "quotes"
def start_requests(self):
urls = [
'http://quotes.toscrape.com/page/1/',
'http://quotes.toscrape.com/page/2/',
# ...
]
for url in urls:
yield scrapy.Request(url=url, callback=self.parse)
def parse(self, response):
for quote in response.css('div.quote'):
item = QuoteItem()
item['text'] = quote.css('span.text::text').get()
item['author'] = quote.css('small.author::text').get()
item['tags'] = quote.css('div.tags a.tag::text').getall()
item['spider'] = self.name
yield item
if __name__ == '__main__':
settings = dict()
settings['USER_AGENT'] = 'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)'
settings['HTTPCACHE_ENABLED'] = True
settings['CONCURRENT_REQUESTS'] = 20
settings['CONCURRENT_REQUESTS_PER_DOMAIN'] = 20
settings['JSON_FILE'] = 'items.jl'
settings['ITEM_PIPELINES'] = dict()
settings['ITEM_PIPELINES']['__main__.TextCleaningPipeline'] = 800
settings['ITEM_PIPELINES']['__main__.JsonWriterPipeline'] = 801
process = CrawlerProcess(settings=settings)
process.crawl(QuoteSpider)
process.start()
紧随其后的是
$ pip install Scrapy
$ python quote_spiders.py
为了微调scraper,相应地调整CONCURRENT_REQUESTS和CONCURRENT_REQUESTS_PER_DOMAIN设置。
Twistedless解决方案:
from urlparse import urlparse
from threading import Thread
import httplib, sys
from Queue import Queue
concurrent = 200
def doWork():
while True:
url = q.get()
status, url = getStatus(url)
doSomethingWithResult(status, url)
q.task_done()
def getStatus(ourl):
try:
url = urlparse(ourl)
conn = httplib.HTTPConnection(url.netloc)
conn.request("HEAD", url.path)
res = conn.getresponse()
return res.status, ourl
except:
return "error", ourl
def doSomethingWithResult(status, url):
print status, url
q = Queue(concurrent * 2)
for i in range(concurrent):
t = Thread(target=doWork)
t.daemon = True
t.start()
try:
for url in open('urllist.txt'):
q.put(url.strip())
q.join()
except KeyboardInterrupt:
sys.exit(1)
这个方案比twisted方案稍微快一点,并且使用更少的CPU。
创建epoll对象, 打开许多客户端TCP套接字, 调整他们的发送缓冲区比请求头多一点, 发送一个请求头-它应该是即时的,只是放置到缓冲区, 在epoll对象中注册套接字 在epoll obect上做。poll, 从.poll中读取每个套接字的前3个字节, 将它们写入sys。Stdout后面跟着\n(不刷新), 关闭客户端套接字。
限制同时打开的套接字数量-在创建套接字时处理错误。只有当另一个套接字关闭时才创建新的套接字。 调整操作系统限制。 尝试分成几个(不是很多)进程:这可能有助于更有效地使用CPU。
最简单的方法是使用Python的内置线程库。它们不是“真正的”/内核线程。它们有问题(比如序列化),但足够好了。你需要一个队列和线程池。这里有一个选项,但是编写自己的选项很简单。您无法并行处理所有100,000个调用,但可以同时发出100个(或左右)调用。
自从2010年这篇文章发布以来,事情发生了很大的变化,我还没有尝试过所有其他的答案,但我尝试了一些,我发现使用python3.6对我来说这是最好的。
在AWS上运行时,我每秒可以获取大约150个独特的域名。
import concurrent.futures
import requests
import time
out = []
CONNECTIONS = 100
TIMEOUT = 5
tlds = open('../data/sample_1k.txt').read().splitlines()
urls = ['http://{}'.format(x) for x in tlds[1:]]
def load_url(url, timeout):
ans = requests.head(url, timeout=timeout)
return ans.status_code
with concurrent.futures.ThreadPoolExecutor(max_workers=CONNECTIONS) as executor:
future_to_url = (executor.submit(load_url, url, TIMEOUT) for url in urls)
time1 = time.time()
for future in concurrent.futures.as_completed(future_to_url):
try:
data = future.result()
except Exception as exc:
data = str(type(exc))
finally:
out.append(data)
print(str(len(out)),end="\r")
time2 = time.time()
print(f'Took {time2-time1:.2f} s')
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录