如何在Python中检查字符串是否表示数值?

def is_number(s):
    try:
        float(s)
        return True
    except ValueError:
        return False

上述方法可行,但似乎很笨拙。


如果您正在测试的内容来自用户输入,那么即使它表示int或float,它仍然是一个字符串。请参阅如何将输入读取为数字?用于转换输入,并询问用户输入,直到他们给出有效响应以确保输入在继续之前表示int或float(或其他要求)。


当前回答

强制转换为float并捕获ValueError可能是最快的方法,因为float()专门用于此。任何其他需要字符串解析(正则表达式等)的操作都可能会比较慢,因为它没有针对该操作进行调整。我的0.02美元。

其他回答

只有Mimic C#

在C#中,有两个不同的函数处理标量值的解析:

Float.Parse()Float.TryParse()

float.parse():

def parse(string):
    try:
        return float(string)
    except Exception:
        throw TypeError

注意:如果您想知道为什么我将异常更改为TypeError,请参阅以下文档。

float.try_parse():

def try_parse(string, fail=None):
    try:
        return float(string)
    except Exception:
        return fail;

注意:您不希望返回布尔值“False”,因为这仍然是一个值类型。没有更好的,因为它表明失败。当然,如果您想要一些不同的东西,可以将fail参数更改为您想要的任何值。

要扩展float以包含“parse()”和“try_parse()”,您需要对“float”类进行monkeypatch以添加这些方法。

如果你想尊重已有的函数,代码应该是这样的:

def monkey_patch():
    if(!hasattr(float, 'parse')):
        float.parse = parse
    if(!hasattr(float, 'try_parse')):
        float.try_parse = try_parse

侧注:我个人更喜欢称之为“猴子打拳”,因为我这样做时感觉就像在滥用语言,但YMMV除外。

用法:

float.parse('giggity') // throws TypeException
float.parse('54.3') // returns the scalar value 54.3
float.tryParse('twank') // returns None
float.tryParse('32.2') // returns the scalar value 32.2

伟大的蟒蛇圣人对罗马教廷夏皮索斯说:“你能做的任何事,我都能做得更好;我能做得比你更好。”

仅对于非负(无符号)整数,请使用isdigit():

>>> a = "03523"
>>> a.isdigit()
True
>>> b = "963spam"
>>> b.isdigit()
False

isdigit()文档:Python2,Python3

对于Python 2 Unicode字符串:isnumeric()。

我想看看哪种方法最快。总的来说,check_replace函数给出了最佳和最一致的结果。check_exception函数给出了最快的结果,但前提是没有触发异常——这意味着它的代码是最有效的,但抛出异常的开销非常大。

请注意,检查成功的强制转换是唯一准确的方法,例如,这与check_exception一起工作,但其他两个测试函数将为有效的float返回False:

huge_number = float('1e+100')

以下是基准代码:

import time, re, random, string

ITERATIONS = 10000000

class Timer:    
    def __enter__(self):
        self.start = time.clock()
        return self
    def __exit__(self, *args):
        self.end = time.clock()
        self.interval = self.end - self.start

def check_regexp(x):
    return re.compile("^\d*\.?\d*$").match(x) is not None

def check_replace(x):
    return x.replace('.','',1).isdigit()

def check_exception(s):
    try:
        float(s)
        return True
    except ValueError:
        return False

to_check = [check_regexp, check_replace, check_exception]

print('preparing data...')
good_numbers = [
    str(random.random() / random.random()) 
    for x in range(ITERATIONS)]

bad_numbers = ['.' + x for x in good_numbers]

strings = [
    ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(random.randint(1,10)))
    for x in range(ITERATIONS)]

print('running test...')
for func in to_check:
    with Timer() as t:
        for x in good_numbers:
            res = func(x)
    print('%s with good floats: %s' % (func.__name__, t.interval))
    with Timer() as t:
        for x in bad_numbers:
            res = func(x)
    print('%s with bad floats: %s' % (func.__name__, t.interval))
    with Timer() as t:
        for x in strings:
            res = func(x)
    print('%s with strings: %s' % (func.__name__, t.interval))

以下是2017年MacBook Pro 13上Python 2.7.10的结果:

check_regexp with good floats: 12.688639
check_regexp with bad floats: 11.624862
check_regexp with strings: 11.349414
check_replace with good floats: 4.419841
check_replace with bad floats: 4.294909
check_replace with strings: 4.086358
check_exception with good floats: 3.276668
check_exception with bad floats: 13.843092
check_exception with strings: 15.786169

以下是2017年MacBook Pro 13上Python 3.6.5的结果:

check_regexp with good floats: 13.472906000000009
check_regexp with bad floats: 12.977665000000016
check_regexp with strings: 12.417542999999995
check_replace with good floats: 6.011045999999993
check_replace with bad floats: 4.849356
check_replace with strings: 4.282754000000011
check_exception with good floats: 6.039081999999979
check_exception with bad floats: 9.322753000000006
check_exception with strings: 9.952595000000002

以下是2017年MacBook Pro 13上PyPy 2.7.13的结果:

check_regexp with good floats: 2.693217
check_regexp with bad floats: 2.744819
check_regexp with strings: 2.532414
check_replace with good floats: 0.604367
check_replace with bad floats: 0.538169
check_replace with strings: 0.598664
check_exception with good floats: 1.944103
check_exception with bad floats: 2.449182
check_exception with strings: 2.200056

str.inumeric()

如果字符串中的所有字符都是数字字符,则返回True,并且至少有一个字符,否则为False。数字字符包括数字字符Unicode数值属性,例如U+2155,VULGAR FRACTION ONE第五。形式上,数字字符是具有属性值的字符Numeric_Type=数字,Numeric_Type=十进制或Numeric_Type=数字。

str.isdecimal()

如果字符串中的所有字符都是十进制字符,并且至少有一个字符,否则为False。十进制字符是可用于在基数10中形成数字的那些,阿拉伯数字零。形式上,十进制字符是一个字符在Unicode通用类别“Nd”中。

两者都适用于Python 3.0中的字符串类型。

我知道这是一个特别古老的问题,但我想补充一个答案,我相信这个答案涵盖了投票最高的答案中缺少的信息,对任何发现这一点的人来说都非常有价值:

对于以下每个方法,如果需要接受任何输入,请将它们与计数连接。(假设我们使用的是整数的语音定义,而不是0-255等)

x.isdigit()用于检查x是否为整数。

x.replace('-','').idigit()用于检查x是否为负值。(值机柜台第一位)

x.replace('.','').idigit()用于检查x是否为小数。

x.replace(“:”,“”).idigit()用于检查x是否为比率。

x.replace('/','',1).idigit()用于检查x是否为分数。