我正在寻找一个非二叉树的非递归深度优先搜索算法。任何帮助都非常感激。
当前回答
你可以使用一个堆栈来保存尚未访问的节点:
stack.push(root)
while !stack.isEmpty() do
node = stack.pop()
for each node.childNodes do
stack.push(stack)
endfor
// …
endwhile
其他回答
基于biziclops的ES6实现很棒的答案:
root = { text: "root", children: [{ text: "c1", children: [{ text: "c11" }, { text: "c12" }] }, { text: "c2", children: [{ text: "c21" }, { text: "c22" }] }, ] } console.log("DFS:") DFS(root, node => node.children, node => console.log(node.text)); console.log("BFS:") BFS(root, node => node.children, node => console.log(node.text)); function BFS(root, getChildren, visit) { let nodesToVisit = [root]; while (nodesToVisit.length > 0) { const currentNode = nodesToVisit.shift(); nodesToVisit = [ ...nodesToVisit, ...(getChildren(currentNode) || []), ]; visit(currentNode); } } function DFS(root, getChildren, visit) { let nodesToVisit = [root]; while (nodesToVisit.length > 0) { const currentNode = nodesToVisit.shift(); nodesToVisit = [ ...(getChildren(currentNode) || []), ...nodesToVisit, ]; visit(currentNode); } }
使用堆栈来跟踪节点
Stack<Node> s;
s.prepend(tree.head);
while(!s.empty) {
Node n = s.poll_front // gets first node
// do something with q?
for each child of n: s.prepend(child)
}
DFS:
list nodes_to_visit = {root};
while( nodes_to_visit isn't empty ) {
currentnode = nodes_to_visit.take_first();
nodes_to_visit.prepend( currentnode.children );
//do something
}
BFS:
list nodes_to_visit = {root};
while( nodes_to_visit isn't empty ) {
currentnode = nodes_to_visit.take_first();
nodes_to_visit.append( currentnode.children );
//do something
}
两者的对称相当酷。
更新:如前所述,take_first()删除并返回列表中的第一个元素。
你可以使用一个堆栈来保存尚未访问的节点:
stack.push(root)
while !stack.isEmpty() do
node = stack.pop()
for each node.childNodes do
stack.push(stack)
endfor
// …
endwhile
伪代码基于@biziclop的答案:
只使用基本结构:变量、数组、if、while和for 函数getNode(id)和getChildren(id) 假设已知节点数N
注意:我从1开始使用数组索引,而不是0。
广度优先
S = Array(N)
S[1] = 1; // root id
cur = 1;
last = 1
while cur <= last
id = S[cur]
node = getNode(id)
children = getChildren(id)
n = length(children)
for i = 1..n
S[ last+i ] = children[i]
end
last = last+n
cur = cur+1
visit(node)
end
深度优先
S = Array(N)
S[1] = 1; // root id
cur = 1;
while cur > 0
id = S[cur]
node = getNode(id)
children = getChildren(id)
n = length(children)
for i = 1..n
// assuming children are given left-to-right
S[ cur+i-1 ] = children[ n-i+1 ]
// otherwise
// S[ cur+i-1 ] = children[i]
end
cur = cur+n-1
visit(node)
end