如何在Python中实现通用树?这有内置的数据结构吗?


当前回答

class Node:
    """
    Class Node
    """
    def __init__(self, value):
        self.left = None
        self.data = value
        self.right = None

class Tree:
    """
    Class tree will provide a tree as well as utility functions.
    """

    def createNode(self, data):
        """
        Utility function to create a node.
        """
        return Node(data)

    def insert(self, node , data):
        """
        Insert function will insert a node into tree.
        Duplicate keys are not allowed.
        """
        #if tree is empty , return a root node
        if node is None:
            return self.createNode(data)
        # if data is smaller than parent , insert it into left side
        if data < node.data:
            node.left = self.insert(node.left, data)
        elif data > node.data:
            node.right = self.insert(node.right, data)

        return node


    def search(self, node, data):
        """
        Search function will search a node into tree.
        """
        # if root is None or root is the search data.
        if node is None or node.data == data:
            return node

        if node.data < data:
            return self.search(node.right, data)
        else:
            return self.search(node.left, data)



    def deleteNode(self,node,data):
        """
        Delete function will delete a node into tree.
        Not complete , may need some more scenarion that we can handle
        Now it is handling only leaf.
        """

        # Check if tree is empty.
        if node is None:
            return None

        # searching key into BST.
        if data < node.data:
            node.left = self.deleteNode(node.left, data)
        elif data > node.data:
            node.right = self.deleteNode(node.right, data)
        else: # reach to the node that need to delete from BST.
            if node.left is None and node.right is None:
                del node
            if node.left == None:
                temp = node.right
                del node
                return  temp
            elif node.right == None:
                temp = node.left
                del node
                return temp

        return node

    def traverseInorder(self, root):
        """
        traverse function will print all the node in the tree.
        """
        if root is not None:
            self.traverseInorder(root.left)
            print(root.data)
            self.traverseInorder(root.right)

    def traversePreorder(self, root):
        """
        traverse function will print all the node in the tree.
        """
        if root is not None:
            print(root.data)
            self.traversePreorder(root.left)
            self.traversePreorder(root.right)

    def traversePostorder(self, root):
        """
        traverse function will print all the node in the tree.
        """
        if root is not None:
            self.traversePostorder(root.left)
            self.traversePostorder(root.right)
            print(root.data)


def main():
    root = None
    tree = Tree()
    root = tree.insert(root, 10)
    print(root)
    tree.insert(root, 20)
    tree.insert(root, 30)
    tree.insert(root, 40)
    tree.insert(root, 70)
    tree.insert(root, 60)
    tree.insert(root, 80)

    print("Traverse Inorder")
    tree.traverseInorder(root)

    print("Traverse Preorder")
    tree.traversePreorder(root)

    print("Traverse Postorder")
    tree.traversePostorder(root)


if __name__ == "__main__":
    main()

其他回答

如果您想要创建树数据结构,那么首先必须创建treeElement对象。如果您创建了treeElement对象,那么您可以决定树的行为。

下面是TreeElement类:

class TreeElement (object):

def __init__(self):
    self.elementName = None
    self.element = []
    self.previous = None
    self.elementScore = None
    self.elementParent = None
    self.elementPath = []
    self.treeLevel = 0

def goto(self, data):
    for child in range(0, len(self.element)):
        if (self.element[child].elementName == data):
            return self.element[child]

def add(self):

    single_element = TreeElement()
    single_element.elementName = self.elementName
    single_element.previous = self.elementParent
    single_element.elementScore = self.elementScore
    single_element.elementPath = self.elementPath
    single_element.treeLevel = self.treeLevel

    self.element.append(single_element)

    return single_element

现在,我们必须使用这个元素来创建树,在这个例子中我使用的是A*树。

class AStarAgent(Agent):
# Initialization Function: Called one time when the game starts
def registerInitialState(self, state):
    return;

# GetAction Function: Called with every frame
def getAction(self, state):

    # Sorting function for the queue
    def sortByHeuristic(each_element):

        if each_element.elementScore:
            individual_score = each_element.elementScore[0][0] + each_element.treeLevel
        else:
            individual_score = admissibleHeuristic(each_element)

        return individual_score

    # check the game is over or not
    if state.isWin():
        print('Job is done')
        return Directions.STOP
    elif state.isLose():
        print('you lost')
        return Directions.STOP

    # Create empty list for the next states
    astar_queue = []
    astar_leaf_queue = []
    astar_tree_level = 0
    parent_tree_level = 0

    # Create Tree from the give node element
    astar_tree = TreeElement()
    astar_tree.elementName = state
    astar_tree.treeLevel = astar_tree_level
    astar_tree = astar_tree.add()

    # Add first element into the queue
    astar_queue.append(astar_tree)

    # Traverse all the elements of the queue
    while astar_queue:

        # Sort the element from the queue
        if len(astar_queue) > 1:
            astar_queue.sort(key=lambda x: sortByHeuristic(x))

        # Get the first node from the queue
        astar_child_object = astar_queue.pop(0)
        astar_child_state = astar_child_object.elementName

        # get all legal actions for the current node
        current_actions = astar_child_state.getLegalPacmanActions()

        if current_actions:

            # get all the successor state for these actions
            for action in current_actions:

                # Get the successor of the current node
                next_state = astar_child_state.generatePacmanSuccessor(action)

                if next_state:

                    # evaluate the successor states using scoreEvaluation heuristic
                    element_scored = [(admissibleHeuristic(next_state), action)]

                    # Increase the level for the child
                    parent_tree_level = astar_tree.goto(astar_child_state)
                    if parent_tree_level:
                        astar_tree_level = parent_tree_level.treeLevel + 1
                    else:
                        astar_tree_level += 1

                    # create tree for the finding the data
                    astar_tree.elementName = next_state
                    astar_tree.elementParent = astar_child_state
                    astar_tree.elementScore = element_scored
                    astar_tree.elementPath.append(astar_child_state)
                    astar_tree.treeLevel = astar_tree_level
                    astar_object = astar_tree.add()

                    # If the state exists then add that to the queue
                    astar_queue.append(astar_object)

                else:
                    # Update the value leaf into the queue
                    astar_leaf_state = astar_tree.goto(astar_child_state)
                    astar_leaf_queue.append(astar_leaf_state)

你可以从对象中添加/删除任何元素,但要使结构为完整的。

你可以试试:

from collections import defaultdict
def tree(): return defaultdict(tree)
users = tree()
users['harold']['username'] = 'hrldcpr'
users['handler']['username'] = 'matthandlersux'

建议在这里:https://gist.github.com/2012250

泛型树是一个具有零个或多个子节点的节点,每个子节点都是一个合适的(树)节点。它与二叉树不同,它们是不同的数据结构,尽管它们都有一些相同的术语。

Python中没有任何用于泛型树的内置数据结构,但很容易通过类实现。

class Tree(object):
    "Generic tree node."
    def __init__(self, name='root', children=None):
        self.name = name
        self.children = []
        if children is not None:
            for child in children:
                self.add_child(child)
    def __repr__(self):
        return self.name
    def add_child(self, node):
        assert isinstance(node, Tree)
        self.children.append(node)
#    *
#   /|\
#  1 2 +
#     / \
#    3   4
t = Tree('*', [Tree('1'),
               Tree('2'),
               Tree('+', [Tree('3'),
                          Tree('4')])])

Greg Hewgill的回答很好,但如果你每层需要更多的节点,你可以使用列表|字典来创建它们:然后使用方法按名称或顺序(如id)访问它们。

class node(object):
    def __init__(self):
        self.name=None
        self.node=[]
        self.otherInfo = None
        self.prev=None
    def nex(self,child):
        "Gets a node by number"
        return self.node[child]
    def prev(self):
        return self.prev
    def goto(self,data):
        "Gets the node by name"
        for child in range(0,len(self.node)):
            if(self.node[child].name==data):
                return self.node[child]
    def add(self):
        node1=node()
        self.node.append(node1)
        node1.prev=self
        return node1

现在只需创建一个根并建立它: 例:

tree=node()  #create a node
tree.name="root" #name it root
tree.otherInfo="blue" #or what ever 
tree=tree.add() #add a node to the root
tree.name="node1" #name it

    root
   /
child1

tree=tree.add()
tree.name="grandchild1"

       root
      /
   child1
   /
grandchild1

tree=tree.prev()
tree=tree.add()
tree.name="gchild2"

          root
           /
        child1
        /    \
grandchild1 gchild2

tree=tree.prev()
tree=tree.prev()
tree=tree.add()
tree=tree.name="child2"

              root
             /   \
        child1  child2
       /     \
grandchild1 gchild2


tree=tree.prev()
tree=tree.goto("child1") or tree=tree.nex(0)
tree.name="changed"

              root
              /   \
         changed   child2
        /      \
  grandchild1  gchild2

这应该足够让你开始思考如何让它工作了

另一个基于Bruno回答的树的实现:

class Node:
    def __init__(self):
        self.name: str = ''
        self.children: List[Node] = []
        self.parent: Node = self

    def __getitem__(self, i: int) -> 'Node':
        return self.children[i]

    def add_child(self):
        child = Node()
        self.children.append(child)
        child.parent = self
        return child

    def __str__(self) -> str:
        def _get_character(x, left, right) -> str:
            if x < left:
                return '/'
            elif x >= right:
                return '\\'
            else:
                return '|'

        if len(self.children):
            children_lines: Sequence[List[str]] = list(map(lambda child: str(child).split('\n'), self.children))
            widths: Sequence[int] = list(map(lambda child_lines: len(child_lines[0]), children_lines))
            max_height: int = max(map(len, children_lines))
            total_width: int = sum(widths) + len(widths) - 1
            left: int = (total_width - len(self.name) + 1) // 2
            right: int = left + len(self.name)

            return '\n'.join((
                self.name.center(total_width),
                ' '.join(map(lambda width, position: _get_character(position - width // 2, left, right).center(width),
                             widths, accumulate(widths, add))),
                *map(
                    lambda row: ' '.join(map(
                        lambda child_lines: child_lines[row] if row < len(child_lines) else ' ' * len(child_lines[0]),
                        children_lines)),
                    range(max_height))))
        else:
            return self.name

还有一个如何使用它的例子:

tree = Node()
tree.name = 'Root node'
tree.add_child()
tree[0].name = 'Child node 0'
tree.add_child()
tree[1].name = 'Child node 1'
tree.add_child()
tree[2].name = 'Child node 2'
tree[1].add_child()
tree[1][0].name = 'Grandchild 1.0'
tree[2].add_child()
tree[2][0].name = 'Grandchild 2.0'
tree[2].add_child()
tree[2][1].name = 'Grandchild 2.1'
print(tree)

它应该输出:

                        Root node                        
     /             /                      \              
Child node 0  Child node 1           Child node 2        
                   |              /              \       
             Grandchild 1.0 Grandchild 2.0 Grandchild 2.1