我想设计一个程序,可以帮助我在5种预定义的颜色中评估哪一种更类似于可变颜色,以及与可变颜色的百分比。问题是我不知道如何手动一步一步地做到这一点。所以想一个程序就更难了。
更多细节:颜色来自不同颜色的管子和凝胶的照片。我有5个不同颜色的管子,每个代表5个等级中的1个。我想拍摄其他样本的照片,然后在电脑上通过比较颜色来评估样本属于哪个级别,我也想知道一个近似的百分比。我想要一个这样做的程序:http://www.colortools.net/color_matcher.html
如果你能告诉我该采取什么步骤,即使它们需要我手动思考和执行。那会很有帮助的。
Actually I walked the same path a couple of months ago. There is no perfect answer to the question (that was asked here a couple of times) but there is one, more sophisticated than the sqrt(r-r) etc. answer and more easy to implement directly with RGB without moving to all kinds of alternate color spaces. I found this formula here which is a low cost approximation of the quite complicated real formula (by the CIE which is the W3C of colors, since this is a not finished quest, you can find older and simpler color difference equations there).
Good Luck.
编辑:为了子孙后代,这里是相关的C代码:
typedef struct {
unsigned char r, g, b;
} RGB;
double ColourDistance(RGB e1, RGB e2)
{
long rmean = ( (long)e1.r + (long)e2.r ) / 2;
long r = (long)e1.r - (long)e2.r;
long g = (long)e1.g - (long)e2.g;
long b = (long)e1.b - (long)e2.b;
return sqrt((((512+rmean)*r*r)>>8) + 4*g*g + (((767-rmean)*b*b)>>8));
}
如果你有两个颜色对象c1和c2,你可以比较c1和c2的每个RGB值。
int diffRed = Math.abs(c1.getRed() - c2.getRed());
int diffGreen = Math.abs(c1.getGreen() - c2.getGreen());
int diffBlue = Math.abs(c1.getBlue() - c2.getBlue());
你可以将这些值除以饱和度的差异(255),你就会得到两者之间的差异。
float pctDiffRed = (float)diffRed / 255;
float pctDiffGreen = (float)diffGreen / 255;
float pctDiffBlue = (float)diffBlue / 255;
之后你就可以找到平均色差的百分比。
(pctDiffRed + pctDiffGreen + pctDiffBlue) / 3 * 100
这就得到了c和c之间的百分比差。
只是另一个答案,尽管它与Supr的答案相似-只是不同的颜色空间。
问题是:人类感知颜色的差异并不均匀,而RGB颜色空间忽略了这一点。因此,如果你使用RGB颜色空间,只是计算两种颜色之间的欧几里得距离,你可能会得到一个在数学上绝对正确的差异,但与人类告诉你的不一致。
This may not be a problem - the difference is not that large I think, but if you want to solve this "better" you should convert your RGB colors into a color space that was specifically designed to avoid the above problem. There are several ones, improvements from earlier models (since this is based on human perception we need to measure the "correct" values based on experimental data). There's the Lab colorspace which I think would be the best although a bit complicated to convert it to. Simpler would be the CIE XYZ one.
这里有一个网站列出了在不同颜色空间之间转换的公式,所以你可以尝试一下。
快速回答
我找到这个帖子是因为我需要这个问题的Swift版本。由于还没有人给出答案,我的答案是:
extension UIColor {
var rgba: (red: CGFloat, green: CGFloat, blue: CGFloat, alpha: CGFloat) {
var red: CGFloat = 0
var green: CGFloat = 0
var blue: CGFloat = 0
var alpha: CGFloat = 0
getRed(&red, green: &green, blue: &blue, alpha: &alpha)
return (red, green, blue, alpha)
}
func isSimilar(to colorB: UIColor) -> Bool {
let rgbA = self.rgba
let rgbB = colorB.rgba
let diffRed = abs(CGFloat(rgbA.red) - CGFloat(rgbB.red))
let diffGreen = abs(rgbA.green - rgbB.green)
let diffBlue = abs(rgbA.blue - rgbB.blue)
let pctRed = diffRed
let pctGreen = diffGreen
let pctBlue = diffBlue
let pct = (pctRed + pctGreen + pctBlue) / 3 * 100
return pct < 10 ? true : false
}
}
用法:
let black: UIColor = UIColor.black
let white: UIColor = UIColor.white
let similar: Bool = black.isSimilar(to: white)
我设置小于10%的差异返回相似的颜色,但你可以自定义这自己。
我尝试了各种方法,如LAB颜色空间,HSV比较,我发现光度在这个目的上非常有效。
这是Python版本
def lum(c):
def factor(component):
component = component / 255;
if (component <= 0.03928):
component = component / 12.92;
else:
component = math.pow(((component + 0.055) / 1.055), 2.4);
return component
components = [factor(ci) for ci in c]
return (components[0] * 0.2126 + components[1] * 0.7152 + components[2] * 0.0722) + 0.05;
def color_distance(c1, c2):
l1 = lum(c1)
l2 = lum(c2)
higher = max(l1, l2)
lower = min(l1, l2)
return (higher - lower) / higher
c1 = ImageColor.getrgb('white')
c2 = ImageColor.getrgb('yellow')
print(color_distance(c1, c2))
会给你
0.0687619047619048
对于快速和肮脏,你可以做到
import java.awt.Color;
private Color dropPrecision(Color c,int threshold){
return new Color((c.getRed()/threshold),
(c.getGreen()/threshold),
(c.getBlue()/threshold));
}
public boolean inThreshold(Color _1,Color _2,int threshold){
return dropPrecision(_1,threshold)==dropPrecision(_2,threshold);
}
利用整数除法对颜色进行量化。