我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

给你,简单干净的解决方案,复杂度为O(N):

int[] a = {1,2,3,4,5};
    int[] r = new int[a.length];
    int x = 1;
    r[0] = 1;
    for (int i=1;i<a.length;i++){
        r[i]=r[i-1]*a[i-1];
    }
    for (int i=a.length-1;i>0;i--){
        x=x*a[i];
        r[i-1]=x*r[i-1];
    }
    for (int i=0;i<r.length;i++){
        System.out.println(r[i]);
    }

其他回答

    int[] arr1 = { 1, 2, 3, 4, 5 };
    int[] product = new int[arr1.Length];              

    for (int i = 0; i < arr1.Length; i++)
    {
        for (int j = 0; j < product.Length; j++)
        {
            if (i != j)
            {
                product[j] = product[j] == 0 ? arr1[i] : product[j] * arr1[i];
            }
        }
    }

下面是另一个简单的概念,可以解决O(N)中的问题。

        int[] arr = new int[] {1, 2, 3, 4, 5};
        int[] outArray = new int[arr.length]; 
        for(int i=0;i<arr.length;i++){
            int res=Arrays.stream(arr).reduce(1, (a, b) -> a * b);
            outArray[i] = res/arr[i];
        }
        System.out.println(Arrays.toString(outArray));

多基因润滑剂方法的一个解释是:

诀窍是构造数组(在4个元素的情况下):

{              1,         a[0],    a[0]*a[1],    a[0]*a[1]*a[2],  }
{ a[1]*a[2]*a[3],    a[2]*a[3],         a[3],                 1,  }

这两种方法都可以在O(n)中分别从左右边开始。

然后,将两个数组逐个元素相乘,得到所需的结果。

我的代码看起来是这样的:

int a[N] // This is the input
int products_below[N];
int p = 1;
for (int i = 0; i < N; ++i) {
    products_below[i] = p;
    p *= a[i];
}

int products_above[N];
p = 1;
for (int i = N - 1; i >= 0; --i) {
    products_above[i] = p;
    p *= a[i];
}

int products[N]; // This is the result
for (int i = 0; i < N; ++i) {
    products[i] = products_below[i] * products_above[i];
}

如果你也需要空间中的解是O(1),你可以这样做(在我看来不太清楚):

int a[N] // This is the input
int products[N];

// Get the products below the current index
int p = 1;
for (int i = 0; i < N; ++i) {
    products[i] = p;
    p *= a[i];
}

// Get the products above the current index
p = 1;
for (int i = N - 1; i >= 0; --i) {
    products[i] *= p;
    p *= a[i];
}
{-
Recursive solution using sqrt(n) subsets. Runs in O(n).

Recursively computes the solution on sqrt(n) subsets of size sqrt(n). 
Then recurses on the product sum of each subset.
Then for each element in each subset, it computes the product with
the product sum of all other products.
Then flattens all subsets.

Recurrence on the run time is T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n

Suppose that T(n) ≤ cn in O(n).

T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n
    ≤ sqrt(n)*c*sqrt(n) + c*sqrt(n) + n
    ≤ c*n + c*sqrt(n) + n
    ≤ (2c+1)*n
    ∈ O(n)

Note that ceiling(sqrt(n)) can be computed using a binary search 
and O(logn) iterations, if the sqrt instruction is not permitted.
-}

otherProducts [] = []
otherProducts [x] = [1]
otherProducts [x,y] = [y,x]
otherProducts a = foldl' (++) [] $ zipWith (\s p -> map (*p) s) solvedSubsets subsetOtherProducts
    where 
      n = length a

      -- Subset size. Require that 1 < s < n.
      s = ceiling $ sqrt $ fromIntegral n

      solvedSubsets = map otherProducts subsets
      subsetOtherProducts = otherProducts $ map product subsets

      subsets = reverse $ loop a []
          where loop [] acc = acc
                loop a acc = loop (drop s a) ((take s a):acc)

还有一个O(N^(3/2))非最优解。不过,这很有趣。

首先预处理大小为N^0.5的每个部分乘法(这在O(N)时间复杂度中完成)。然后,计算每个数字的其他值的倍数可以在2*O(N^0.5)时间内完成(为什么?因为您只需要将其他((N^0.5) - 1)数字的最后一个元素相乘,并将结果与属于当前数字组的((N^0.5) - 1)数字相乘。对每一个数都这样做,可以得到O(N^(3/2))时间。

例子:

4, 6, 7, 2, 3, 1, 9, 5, 8

部分结果: 4*6*7 = 168 2*3*1 = 6 9*5*8 = 360

要计算3的值,需要将其他组的值乘以168*360,然后乘以2*1。