受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
当前回答
Javascript解决NxN矩阵与运行时O(N^2)和内存O(1)
function rotate90(matrix){
var length = matrix.length
for(var row = 0; row < (length / 2); row++){
for(var col = row; col < ( length - 1 - row); col++){
var tmpVal = matrix[row][col];
for(var i = 0; i < 4; i++){
var rowSwap = col;
var colSwap = (length - 1) - row;
var poppedVal = matrix[rowSwap][colSwap];
matrix[rowSwap][colSwap] = tmpVal;
tmpVal = poppedVal;
col = colSwap;
row = rowSwap;
}
}
}
}
其他回答
这里有大量的好代码,但我只是想以几何形式展示,这样你就能更好地理解代码逻辑。以下是我的处理方法。
首先,不要把这和换位相混淆,换位是很容易的。
基本的想法是把它当作层,我们一次旋转一个层。
假设我们有一辆4x4
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
当我们顺时针旋转90度,我们得到
13 9 5 1
14 10 6 2
15 11 7 3
16 12 8 4
我们来分解它,首先旋转这四个角
1 4
13 16
然后我们旋转下面这个有点歪斜的菱形
2
8
9
15
然后是第二个斜菱形
3
5
12
14
这就搞定了外缘基本上我们一次做一个壳层直到
最后是中间的方块(如果是奇数则是最后一个不动的元素)
6 7
10 11
现在我们来算出每一层的指标,假设我们总是在最外层工作,我们正在做
[0,0] -> [0,n-1], [0,n-1] -> [n-1,n-1], [n-1,n-1] -> [n-1,0], and [n-1,0] -> [0,0]
[0,1] -> [1,n-1], [1,n-2] -> [n-1,n-2], [n-1,n-2] -> [n-2,0], and [n-2,0] -> [0,1]
[0,2] -> [2,n-2], [2,n-2] -> [n-1,n-3], [n-1,n-3] -> [n-3,0], and [n-3,0] -> [0,2]
等等等等 直到我们走到边缘的一半
所以总的来说模式是
[0,i] -> [i,n-i], [i,n-i] -> [n-1,n-(i+1)], [n-1,n-(i+1)] -> [n-(i+1),0], and [n-(i+1),0] to [0,i]
在Java中
public class Matrix {
/* Author Shrikant Dande */
private static void showMatrix(int[][] arr,int rows,int col){
for(int i =0 ;i<rows;i++){
for(int j =0 ;j<col;j++){
System.out.print(arr[i][j]+" ");
}
System.out.println();
}
}
private static void rotateMatrix(int[][] arr,int rows,int col){
int[][] tempArr = new int[4][4];
for(int i =0 ;i<rows;i++){
for(int j =0 ;j<col;j++){
tempArr[i][j] = arr[rows-1-j][i];
System.out.print(tempArr[i][j]+" ");
}
System.out.println();
}
}
public static void main(String[] args) {
int[][] arr = { {1, 2, 3, 4},
{5, 6, 7, 8},
{9, 1, 2, 5},
{7, 4, 8, 9}};
int rows = 4,col = 4;
showMatrix(arr, rows, col);
System.out.println("------------------------------------------------");
rotateMatrix(arr, rows, col);
}
}
这是c#的
int[,] array = new int[4,4] {
{ 1,2,3,4 },
{ 5,6,7,8 },
{ 9,0,1,2 },
{ 3,4,5,6 }
};
int[,] rotated = RotateMatrix(array, 4);
static int[,] RotateMatrix(int[,] matrix, int n) {
int[,] ret = new int[n, n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
ret[i, j] = matrix[n - j - 1, i];
}
}
return ret;
}
PHP:
array_unshift($array, null);
$array = call_user_func_array("array_map", $array);
如果你需要旋转矩形二维阵列90度,在上面的代码之前或之后添加以下一行(取决于你需要的旋转方向):
$array = array_reverse($array);
这是Java中的一个更好的版本:我已经为一个具有不同宽度和高度的矩阵制作了它
H是旋转后矩阵的高度 W是旋转后矩阵的宽度
public int[][] rotateMatrixRight(int[][] matrix)
{
/* W and H are already swapped */
int w = matrix.length;
int h = matrix[0].length;
int[][] ret = new int[h][w];
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
ret[i][j] = matrix[w - j - 1][i];
}
}
return ret;
}
public int[][] rotateMatrixLeft(int[][] matrix)
{
/* W and H are already swapped */
int w = matrix.length;
int h = matrix[0].length;
int[][] ret = new int[h][w];
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
ret[i][j] = matrix[j][h - i - 1];
}
}
return ret;
}
此代码基于Nick Berardi的帖子。