有没有比这个方法更简洁的方法来获取整数的位数?
int numDigits = String.valueOf(1000).length();
有没有比这个方法更简洁的方法来获取整数的位数?
int numDigits = String.valueOf(1000).length();
当前回答
我看到有人使用String库,甚至使用Integer类。这没什么问题,但是求位数的算法并不复杂。我在这个例子中使用的是long类型,但它也可以用于int类型。
private static int getLength(long num) {
int count = 1;
while (num >= 10) {
num = num / 10;
count++;
}
return count;
}
其他回答
现在还不能留言,所以我会单独回复。
基于对数的解决方案不能计算非常大的长整数的正确位数,例如:
long n = 99999999999999999L;
// correct answer: 17
int numberOfDigits = String.valueOf(n).length();
// incorrect answer: 18
int wrongNumberOfDigits = (int) (Math.log10(n) + 1);
基于对数的解决方案在大整数中计算不正确的位数
使用Java
int nDigits = Math.floor(Math.log10(Math.abs(the_integer))) + 1;
使用import java.lang.Math.*;一开始
使用C
int nDigits = floor(log10(abs(the_integer))) + 1;
在开始时使用include math.h
我还没有看到基于乘法的解决方案。对数、除法和基于字符串的解决方案将在数百万个测试用例中变得相当笨拙,所以这里有一个int型的解决方案:
/**
* Returns the number of digits needed to represents an {@code int} value in
* the given radix, disregarding any sign.
*/
public static int len(int n, int radix) {
radixCheck(radix);
// if you want to establish some limitation other than radix > 2
n = Math.abs(n);
int len = 1;
long min = radix - 1;
while (n > min) {
n -= min;
min *= radix;
len++;
}
return len;
}
以10为基底,这是可行的,因为n本质上是与9,99,999…因为min是9,90,900…n被减去9,90,900…
不幸的是,仅仅因为溢出而替换int的每个实例是不能移植到long的。另一方面,它恰好适用于2垒和10垒(但对于大多数其他垒来说严重失败)。您将需要一个用于溢出点的查找表(或除法测试……)电子战)
/**
* For radices 2 &le r &le Character.MAX_VALUE (36)
*/
private static long[] overflowpt = {-1, -1, 4611686018427387904L,
8105110306037952534L, 3458764513820540928L, 5960464477539062500L,
3948651115268014080L, 3351275184499704042L, 8070450532247928832L,
1200757082375992968L, 9000000000000000000L, 5054470284992937710L,
2033726847845400576L, 7984999310198158092L, 2022385242251558912L,
6130514465332031250L, 1080863910568919040L, 2694045224950414864L,
6371827248895377408L, 756953702320627062L, 1556480000000000000L,
3089447554782389220L, 5939011215544737792L, 482121737504447062L,
839967991029301248L, 1430511474609375000L, 2385723916542054400L,
3902460517721977146L, 6269893157408735232L, 341614273439763212L,
513726300000000000L, 762254306892144930L, 1116892707587883008L,
1617347408439258144L, 2316231840055068672L, 3282671350683593750L,
4606759634479349760L};
public static int len(long n, int radix) {
radixCheck(radix);
n = abs(n);
int len = 1;
long min = radix - 1;
while (n > min) {
len++;
if (min == overflowpt[radix]) break;
n -= min;
min *= radix;
}
return len;
}
Two comments on your benchmark: Java is a complex environment, what with just-in-time compiling and garbage collection and so forth, so to get a fair comparison, whenever I run a benchmark, I always: (a) enclose the two tests in a loop that runs them in sequence 5 or 10 times. Quite often the runtime on the second pass through the loop is quite different from the first. And (b) After each "approach", I do a System.gc() to try to trigger a garbage collection. Otherwise, the first approach might generate a bunch of objects, but not quite enough to force a garbage collection, then the second approach creates a few objects, the heap is exhausted, and garbage collection runs. Then the second approach is "charged" for picking up the garbage left by the first approach. Very unfair!
也就是说,上述两种方法在本例中都没有产生显著差异。
不管有没有这些修改,我得到的结果和你完全不同。当我运行这个时,是的,toString方法给出的运行时间为6400到6600 millis,而log方法给出的运行时间为20,000到20,400 millis。对数方法对我来说不是稍微快一点,而是慢了3倍。
请注意,这两种方法涉及非常不同的代价,所以这并不完全令人震惊:toString方法将创建许多必须清理的临时对象,而log方法需要更密集的计算。因此,可能区别在于,在内存较少的机器上,toString需要更多的垃圾收集回合,而在处理器较慢的机器上,额外的log计算将更加痛苦。
我还尝试了第三种方法。我写了这个小函数:
static int numlength(int n)
{
if (n == 0) return 1;
int l;
n=Math.abs(n);
for (l=0;n>0;++l)
n/=10;
return l;
}
在我的机器上,它运行在1600到1900毫厘之间——不到toString方法的1/3,log方法的1/10。
如果您的数字范围很广,您可以通过开始除以1000或1,000,000来进一步加快速度,以减少循环的次数。我还没玩过。
这取决于你对“整洁”的定义。我认为下面的代码相当简洁,运行速度也很快。
它基于Marian的回答,扩展到所有long值,并使用?:运营商。
private static long[] DIGITS = { 1l,
10l,
100l,
1000l,
10000l,
100000l,
1000000l,
10000000l,
100000000l,
1000000000l,
10000000000l,
100000000000l,
1000000000000l,
10000000000000l,
100000000000000l,
1000000000000000l,
10000000000000000l,
100000000000000000l,
1000000000000000000l };
public static int numberOfDigits(final long n)
{
return n == Long.MIN_VALUE ? 19 : n < 0l ? numberOfDigits(-n) :
n < DIGITS[8] ? // 1-8
n < DIGITS[4] ? // 1-4
n < DIGITS[2] ? // 1-2
n < DIGITS[1] ? 1 : 2 : // 1-2
n < DIGITS[3] ? 3 : 4 : // 3-4
n < DIGITS[6] ? // 5-8
n < DIGITS[5] ? 5 : 6 : // 5-6
n < DIGITS[7] ? 7 : 8 : // 7-8
n < DIGITS[16] ? // 9-16
n < DIGITS[12] ? // 9-12
n < DIGITS[10] ? // 9-10
n < DIGITS[9] ? 9 : 10 : // 9-10
n < DIGITS[11] ? 11 : 12 : // 11-12
n < DIGITS[14] ? // 13-16
n < DIGITS[13] ? 13 : 14 : // 13-14
n < DIGITS[15] ? 15 : 16 : // 15-16
n < DIGITS[17] ? 17 : // 17-19
n < DIGITS[18] ? 18 :
19;
}