有没有比这个方法更简洁的方法来获取整数的位数?

int numDigits = String.valueOf(1000).length();

当前回答

我能试试吗?;)

基于德克的解决方案

final int digits = number==0?1:(1 + (int)Math.floor(Math.log10(Math.abs(number))));

其他回答

计算int变量中数字数的有效方法之一是定义一个方法digitsCounter,其中包含所需数量的条件语句。 方法很简单,我们将检查n位数字所在的每个范围: 0: 9为个位数 10:99是两位数 100: 999是三位数等等……

    static int digitsCounter(int N)
    {   // N = Math.abs(N); // if `N` is -ve
        if (0 <= N && N <= 9) return 1;
        if (10 <= N && N <= 99) return 2;
        if (100 <= N && N <= 999) return 3;
        if (1000 <= N && N <= 9999) return 4;
        if (10000 <= N && N <= 99999) return 5;
        if (100000 <= N && N <= 999999) return 6;
        if (1000000 <= N && N <= 9999999) return 7;
        if (10000000 <= N && N <= 99999999) return 8;
        if (100000000 <= N && N <= 999999999) return 9;
        return 10;
    }

一种更干净的方法是取消下限检查,因为如果我们按顺序进行,就不需要下限检查了。

    static int digitsCounter(int N)
    {
        N = N < 0 ? -N : N;
        if (N <= 9) return 1;
        if (N <= 99) return 2;
        if (N <= 999) return 3;
        if (N <= 9999) return 4;
        if (N <= 99999) return 5;
        if (N <= 999999) return 6;
        if (N <= 9999999) return 7;
        if (N <= 99999999) return 8;
        if (N <= 999999999) return 9;
        return 10; // Max possible digits in an 'int'
    }

Marian的解决方案适用于长类型数字(高达9,223,372,036,854,775,807),以防有人想要复制和粘贴它。 在程序中,我写了这个,因为10000以内的数字更有可能,所以我为它们做了一个特定的分支。不管怎样,这不会有太大的区别。

public static int numberOfDigits (long n) {     
    // Guessing 4 digit numbers will be more probable.
    // They are set in the first branch.
    if (n < 10000L) { // from 1 to 4
        if (n < 100L) { // 1 or 2
            if (n < 10L) {
                return 1;
            } else {
                return 2;
            }
        } else { // 3 or 4
            if (n < 1000L) {
                return 3;
            } else {
                return 4;
            }
        }           
    } else  { // from 5 a 20 (albeit longs can't have more than 18 or 19)
        if (n < 1000000000000L) { // from 5 to 12
            if (n < 100000000L) { // from 5 to 8
                if (n < 1000000L) { // 5 or 6
                    if (n < 100000L) {
                        return 5;
                    } else {
                        return 6;
                    }
                } else { // 7 u 8
                    if (n < 10000000L) {
                        return 7;
                    } else {
                        return 8;
                    }
                }
            } else { // from 9 to 12
                if (n < 10000000000L) { // 9 or 10
                    if (n < 1000000000L) {
                        return 9;
                    } else {
                        return 10;
                    }
                } else { // 11 or 12
                    if (n < 100000000000L) {
                        return 11;
                    } else {
                        return 12;
                    }
                }
            }
        } else { // from 13 to ... (18 or 20)
            if (n < 10000000000000000L) { // from 13 to 16
                if (n < 100000000000000L) { // 13 or 14
                    if (n < 10000000000000L) { 
                        return 13;
                    } else {
                        return 14;
                    }
                } else { // 15 or 16
                    if (n < 1000000000000000L) {
                        return 15;
                    } else {
                        return 16;
                    }
                }
            } else { // from 17 to ...¿20?
                if (n < 1000000000000000000L) { // 17 or 18
                    if (n < 100000000000000000L) {
                        return 17;
                    } else {
                        return 18;
                    }
                } else { // 19? Can it be?
                    // 10000000000000000000L is'nt a valid long.
                    return 19;
                }
            }
        }
    }
}

理想情况下,一个整数除以10的倍数将返回位数,只要该整数不为零。这样一个简单的方法可以创建如下所示。

public static int getNumberOfDigits(int number) {
    int numberOfDigits = 0;                
    while(number != 0) {
        number /= 10;
        numberOfDigits++;
    }
    
    return numberOfDigits;
}

用设计(基于问题)。这是分治法的另一种。我们将首先定义一个枚举(考虑到它仅用于unsigned int)。

public enum IntegerLength {
    One((byte)1,10),
    Two((byte)2,100),
    Three((byte)3,1000),
    Four((byte)4,10000),
    Five((byte)5,100000),
    Six((byte)6,1000000),
    Seven((byte)7,10000000),
    Eight((byte)8,100000000),
    Nine((byte)9,1000000000);

    byte length;
    int value;

    IntegerLength(byte len,int value) {
        this.length = len;
        this.value = value;
    }

    public byte getLenght() {
        return length;
    }

    public int getValue() {
        return value;
    }
}

现在我们将定义一个类,它遍历枚举的值,并比较并返回适当的长度。

public class IntegerLenght {
    public static byte calculateIntLenght(int num) {    
        for(IntegerLength v : IntegerLength.values()) {
            if(num < v.getValue()){
                return v.getLenght();
            }
        }
        return 0;
    }
}

此解决方案的运行时间与分治方法相同。

我能试试吗?;)

基于德克的解决方案

final int digits = number==0?1:(1 + (int)Math.floor(Math.log10(Math.abs(number))));