我需要在c++中加载和使用CSV文件数据。在这一点上,它实际上只是一个以逗号分隔的解析器(即不用担心转义新行和逗号)。主要需要的是逐行解析器,它将在每次调用方法时为下一行返回一个向量。

我发现这篇文章看起来很有前途: http://www.boost.org/doc/libs/1_35_0/libs/spirit/example/fundamental/list_parser.cpp

我从未使用过Boost's Spirit,但我愿意尝试一下。但前提是我忽略了一个更直接的解决方案。


当前回答

使用Boost Tokenizer的解决方案:

std::vector<std::string> vec;
using namespace boost;
tokenizer<escaped_list_separator<char> > tk(
   line, escaped_list_separator<char>('\\', ',', '\"'));
for (tokenizer<escaped_list_separator<char> >::iterator i(tk.begin());
   i!=tk.end();++i) 
{
   vec.push_back(*i);
}

其他回答

下面是读取矩阵的代码,注意你在matlab中也有一个csvwrite函数

void loadFromCSV( const std::string& filename )
{
    std::ifstream       file( filename.c_str() );
    std::vector< std::vector<std::string> >   matrix;
    std::vector<std::string>   row;
    std::string                line;
    std::string                cell;

    while( file )
    {
        std::getline(file,line);
        std::stringstream lineStream(line);
        row.clear();

        while( std::getline( lineStream, cell, ',' ) )
            row.push_back( cell );

        if( !row.empty() )
            matrix.push_back( row );
    }

    for( int i=0; i<int(matrix.size()); i++ )
    {
        for( int j=0; j<int(matrix[i].size()); j++ )
            std::cout << matrix[i][j] << " ";

        std::cout << std::endl;
    }
}

如果可以的话,这是我简单快速的贡献。 没有提高。

接受分隔符和分隔符中的分隔符,只要成对或远离分隔符即可。

#include <iostream>
#include <vector>
#include <fstream>

std::vector<std::string> SplitCSV(const std::string &data, char separator, char delimiter)
{
  std::vector<std::string> Values;
  std::string Val = "";
  bool VDel = false; // Is within delimiter?
  size_t CDel = 0; // Delimiters counter within delimiters.
  const char *C = data.c_str();
  size_t P = 0;
  do
  {
    if ((Val.length() == 0) && (C[P] == delimiter))
    {
      VDel = !VDel;
      CDel = 0;
      P++;
      continue;
    }
    if (VDel)
    {
      if (C[P] == delimiter)
      {
        if (((CDel % 2) == 0) && ( (C[P+1] == separator) || (C[P+1] == 0) || (C[P+1] == '\n') || (C[P+1] == '\r') ))
        {
          VDel = false;
          CDel = 0;
          P++;
          continue;
        }
        else
          CDel++;
      }
    }
    else
    {
      if (C[P] == separator)
      {
        Values.push_back(Val);
        Val = "";
        P++;
        continue;
      }
      if ((C[P] == 0) || (C[P] == '\n') || (C[P] == '\r'))
        break;
    }
    Val += C[P];
    P++;
  } while(P < data.length());
  Values.push_back(Val);
  return Values;
}

bool ReadCsv(const std::string &fname, std::vector<std::vector<std::string>> &data,
  char separator = ',', char delimiter = '\"')
{
  bool Ret = false;
  std::ifstream FCsv(fname);
  if (FCsv)
  {
    FCsv.seekg(0, FCsv.end);
    size_t Siz = FCsv.tellg();
    if (Siz > 0)
    {
      FCsv.seekg(0);
      data.clear();
      std::string Line;
      while (getline(FCsv, Line, '\n'))
        data.push_back(SplitCSV(Line, separator, delimiter));
      Ret = true;
    }
    FCsv.close();
  }
  return Ret;
}

int main(int argc, char *argv[])
{
  std::vector<std::vector<std::string>> Data;
  ReadCsv("fsample.csv", Data);
  return 0;
}

另一个类似于Loki Astari的答案的解决方案,在c++ 11中。这里的行是给定类型的std::元组。代码扫描一行,然后扫描到每个分隔符,然后将值直接转换并转储到元组中(使用一些模板代码)。

for (auto row : csv<std::string, int, float>(file, ',')) {
    std::cout << "first col: " << std::get<0>(row) << std::endl;
}

优势:

非常干净,使用简单,只有c++ 11。 自动类型转换为std::tuple<t1,…>通过算子>>。

缺少什么:

转义和引用 没有错误处理的情况下畸形的CSV。

主要代码:

#include <iterator>
#include <sstream>
#include <string>

namespace csvtools {
    /// Read the last element of the tuple without calling recursively
    template <std::size_t idx, class... fields>
    typename std::enable_if<idx >= std::tuple_size<std::tuple<fields...>>::value - 1>::type
    read_tuple(std::istream &in, std::tuple<fields...> &out, const char delimiter) {
        std::string cell;
        std::getline(in, cell, delimiter);
        std::stringstream cell_stream(cell);
        cell_stream >> std::get<idx>(out);
    }

    /// Read the @p idx-th element of the tuple and then calls itself with @p idx + 1 to
    /// read the next element of the tuple. Automatically falls in the previous case when
    /// reaches the last element of the tuple thanks to enable_if
    template <std::size_t idx, class... fields>
    typename std::enable_if<idx < std::tuple_size<std::tuple<fields...>>::value - 1>::type
    read_tuple(std::istream &in, std::tuple<fields...> &out, const char delimiter) {
        std::string cell;
        std::getline(in, cell, delimiter);
        std::stringstream cell_stream(cell);
        cell_stream >> std::get<idx>(out);
        read_tuple<idx + 1, fields...>(in, out, delimiter);
    }
}

/// Iterable csv wrapper around a stream. @p fields the list of types that form up a row.
template <class... fields>
class csv {
    std::istream &_in;
    const char _delim;
public:
    typedef std::tuple<fields...> value_type;
    class iterator;

    /// Construct from a stream.
    inline csv(std::istream &in, const char delim) : _in(in), _delim(delim) {}

    /// Status of the underlying stream
    /// @{
    inline bool good() const {
        return _in.good();
    }
    inline const std::istream &underlying_stream() const {
        return _in;
    }
    /// @}

    inline iterator begin();
    inline iterator end();
private:

    /// Reads a line into a stringstream, and then reads the line into a tuple, that is returned
    inline value_type read_row() {
        std::string line;
        std::getline(_in, line);
        std::stringstream line_stream(line);
        std::tuple<fields...> retval;
        csvtools::read_tuple<0, fields...>(line_stream, retval, _delim);
        return retval;
    }
};

/// Iterator; just calls recursively @ref csv::read_row and stores the result.
template <class... fields>
class csv<fields...>::iterator {
    csv::value_type _row;
    csv *_parent;
public:
    typedef std::input_iterator_tag iterator_category;
    typedef csv::value_type         value_type;
    typedef std::size_t             difference_type;
    typedef csv::value_type *       pointer;
    typedef csv::value_type &       reference;

    /// Construct an empty/end iterator
    inline iterator() : _parent(nullptr) {}
    /// Construct an iterator at the beginning of the @p parent csv object.
    inline iterator(csv &parent) : _parent(parent.good() ? &parent : nullptr) {
        ++(*this);
    }

    /// Read one row, if possible. Set to end if parent is not good anymore.
    inline iterator &operator++() {
        if (_parent != nullptr) {
            _row = _parent->read_row();
            if (!_parent->good()) {
                _parent = nullptr;
            }
        }
        return *this;
    }

    inline iterator operator++(int) {
        iterator copy = *this;
        ++(*this);
        return copy;
    }

    inline csv::value_type const &operator*() const {
        return _row;
    }

    inline csv::value_type const *operator->() const {
        return &_row;
    }

    bool operator==(iterator const &other) {
        return (this == &other) or (_parent == nullptr and other._parent == nullptr);
    }
    bool operator!=(iterator const &other) {
        return not (*this == other);
    }
};

template <class... fields>
typename csv<fields...>::iterator csv<fields...>::begin() {
    return iterator(*this);
}

template <class... fields>
typename csv<fields...>::iterator csv<fields...>::end() {
    return iterator();
}

我在GitHub上放了一个小的工作示例;我一直用它来解析一些数值数据,它达到了它的目的。

如果你不关心转义逗号和换行符, 并且你不能在引号中嵌入逗号和换行符(如果你不能转义那么…) 那么它只有大约三行代码(好的14 ->,但它只有15读取整个文件)。

std::vector<std::string> getNextLineAndSplitIntoTokens(std::istream& str)
{
    std::vector<std::string>   result;
    std::string                line;
    std::getline(str,line);

    std::stringstream          lineStream(line);
    std::string                cell;

    while(std::getline(lineStream,cell, ','))
    {
        result.push_back(cell);
    }
    // This checks for a trailing comma with no data after it.
    if (!lineStream && cell.empty())
    {
        // If there was a trailing comma then add an empty element.
        result.push_back("");
    }
    return result;
}

我只需要创建一个表示一行的类。 然后流到该对象:

#include <iterator>
#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <string>

class CSVRow
{
    public:
        std::string_view operator[](std::size_t index) const
        {
            return std::string_view(&m_line[m_data[index] + 1], m_data[index + 1] -  (m_data[index] + 1));
        }
        std::size_t size() const
        {
            return m_data.size() - 1;
        }
        void readNextRow(std::istream& str)
        {
            std::getline(str, m_line);

            m_data.clear();
            m_data.emplace_back(-1);
            std::string::size_type pos = 0;
            while((pos = m_line.find(',', pos)) != std::string::npos)
            {
                m_data.emplace_back(pos);
                ++pos;
            }
            // This checks for a trailing comma with no data after it.
            pos   = m_line.size();
            m_data.emplace_back(pos);
        }
    private:
        std::string         m_line;
        std::vector<int>    m_data;
};

std::istream& operator>>(std::istream& str, CSVRow& data)
{
    data.readNextRow(str);
    return str;
}   
int main()
{
    std::ifstream       file("plop.csv");

    CSVRow              row;
    while(file >> row)
    {
        std::cout << "4th Element(" << row[3] << ")\n";
    }
}

但只要做一点工作,我们就可以在技术上创建一个迭代器:

class CSVIterator
{   
    public:
        typedef std::input_iterator_tag     iterator_category;
        typedef CSVRow                      value_type;
        typedef std::size_t                 difference_type;
        typedef CSVRow*                     pointer;
        typedef CSVRow&                     reference;

        CSVIterator(std::istream& str)  :m_str(str.good()?&str:nullptr) { ++(*this); }
        CSVIterator()                   :m_str(nullptr) {}

        // Pre Increment
        CSVIterator& operator++()               {if (m_str) { if (!((*m_str) >> m_row)){m_str = nullptr;}}return *this;}
        // Post increment
        CSVIterator operator++(int)             {CSVIterator    tmp(*this);++(*this);return tmp;}
        CSVRow const& operator*()   const       {return m_row;}
        CSVRow const* operator->()  const       {return &m_row;}

        bool operator==(CSVIterator const& rhs) {return ((this == &rhs) || ((this->m_str == nullptr) && (rhs.m_str == nullptr)));}
        bool operator!=(CSVIterator const& rhs) {return !((*this) == rhs);}
    private:
        std::istream*       m_str;
        CSVRow              m_row;
};


int main()
{
    std::ifstream       file("plop.csv");

    for(CSVIterator loop(file); loop != CSVIterator(); ++loop)
    {
        std::cout << "4th Element(" << (*loop)[3] << ")\n";
    }
}

现在我们已经到了2020年,让我们添加一个CSVRange对象:

class CSVRange
{
    std::istream&   stream;
    public:
        CSVRange(std::istream& str)
            : stream(str)
        {}
        CSVIterator begin() const {return CSVIterator{stream};}
        CSVIterator end()   const {return CSVIterator{};}
};

int main()
{
    std::ifstream       file("plop.csv");

    for(auto& row: CSVRange(file))
    {
        std::cout << "4th Element(" << row[3] << ")\n";
    }
}

你可以使用这个库: https://github.com/vadamsky/csvworker

代码示例:

#include <iostream>
#include "csvworker.h"

using namespace std;

int main()
{
    //
    CsvWorker csv;
    csv.loadFromFile("example.csv");
    cout << csv.getRowsNumber() << "  " << csv.getColumnsNumber() << endl;

    csv.getFieldRef(0, 2) = "0";
    csv.getFieldRef(1, 1) = "0";
    csv.getFieldRef(1, 3) = "0";
    csv.getFieldRef(2, 0) = "0";
    csv.getFieldRef(2, 4) = "0";
    csv.getFieldRef(3, 1) = "0";
    csv.getFieldRef(3, 3) = "0";
    csv.getFieldRef(4, 2) = "0";

    for(unsigned int i=0;i<csv.getRowsNumber();++i)
    {
        //cout << csv.getRow(i) << endl;
        for(unsigned int j=0;j<csv.getColumnsNumber();++j)
        {
            cout << csv.getField(i, j) << ".";
        }
        cout << endl;
    }

    csv.saveToFile("test.csv");

    //
    CsvWorker csv2(4,4);

    csv2.getFieldRef(0, 0) = "a";
    csv2.getFieldRef(0, 1) = "b";
    csv2.getFieldRef(0, 2) = "r";
    csv2.getFieldRef(0, 3) = "a";
    csv2.getFieldRef(1, 0) = "c";
    csv2.getFieldRef(1, 1) = "a";
    csv2.getFieldRef(1, 2) = "d";
    csv2.getFieldRef(2, 0) = "a";
    csv2.getFieldRef(2, 1) = "b";
    csv2.getFieldRef(2, 2) = "r";
    csv2.getFieldRef(2, 3) = "a";

    csv2.saveToFile("test2.csv");

    return 0;
}