我需要在c++中加载和使用CSV文件数据。在这一点上,它实际上只是一个以逗号分隔的解析器(即不用担心转义新行和逗号)。主要需要的是逐行解析器,它将在每次调用方法时为下一行返回一个向量。

我发现这篇文章看起来很有前途: http://www.boost.org/doc/libs/1_35_0/libs/spirit/example/fundamental/list_parser.cpp

我从未使用过Boost's Spirit,但我愿意尝试一下。但前提是我忽略了一个更直接的解决方案。


当前回答

当你使用boost::spirit这样漂亮的东西时,你应该感到自豪

这里我的一个解析器的尝试(几乎)符合这个链接的CSV规范(我不需要在字段中换行)。逗号周围的空格也被省略了)。

在你克服了编译这段代码需要等待10秒的令人震惊的经历之后:),你就可以坐下来享受了。

// csvparser.cpp
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>

#include <iostream>
#include <string>

namespace qi = boost::spirit::qi;
namespace bascii = boost::spirit::ascii;

template <typename Iterator>
struct csv_parser : qi::grammar<Iterator, std::vector<std::string>(), 
    bascii::space_type>
{
    qi::rule<Iterator, char()                                           > COMMA;
    qi::rule<Iterator, char()                                           > DDQUOTE;
    qi::rule<Iterator, std::string(),               bascii::space_type  > non_escaped;
    qi::rule<Iterator, std::string(),               bascii::space_type  > escaped;
    qi::rule<Iterator, std::string(),               bascii::space_type  > field;
    qi::rule<Iterator, std::vector<std::string>(),  bascii::space_type  > start;

    csv_parser() : csv_parser::base_type(start)
    {
        using namespace qi;
        using qi::lit;
        using qi::lexeme;
        using bascii::char_;

        start       = field % ',';
        field       = escaped | non_escaped;
        escaped     = lexeme['"' >> *( char_ -(char_('"') | ',') | COMMA | DDQUOTE)  >> '"'];
        non_escaped = lexeme[       *( char_ -(char_('"') | ',')                  )        ];
        DDQUOTE     = lit("\"\"")       [_val = '"'];
        COMMA       = lit(",")          [_val = ','];
    }

};

int main()
{
    std::cout << "Enter CSV lines [empty] to quit\n";

    using bascii::space;
    typedef std::string::const_iterator iterator_type;
    typedef csv_parser<iterator_type> csv_parser;

    csv_parser grammar;
    std::string str;
    int fid;
    while (getline(std::cin, str))
    {
        fid = 0;

        if (str.empty())
            break;

        std::vector<std::string> csv;
        std::string::const_iterator it_beg = str.begin();
        std::string::const_iterator it_end = str.end();
        bool r = phrase_parse(it_beg, it_end, grammar, space, csv);

        if (r && it_beg == it_end)
        {
            std::cout << "Parsing succeeded\n";
            for (auto& field: csv)
            {
                std::cout << "field " << ++fid << ": " << field << std::endl;
            }
        }
        else
        {
            std::cout << "Parsing failed\n";
        }
    }

    return 0;
}

编译:

make csvparser

测试(例子摘自维基百科):

./csvparser
Enter CSV lines [empty] to quit

1999,Chevy,"Venture ""Extended Edition, Very Large""",,5000.00
Parsing succeeded
field 1: 1999
field 2: Chevy
field 3: Venture "Extended Edition, Very Large"
field 4: 
field 5: 5000.00

1999,Chevy,"Venture ""Extended Edition, Very Large""",,5000.00"
Parsing failed

其他回答

该解决方案检测这4种情况

完整的课程在

https://github.com/pedro-vicente/csv-parser

1,field 2,field 3,
1,field 2,"field 3 quoted, with separator",
1,field 2,"field 3
with newline",
1,field 2,"field 3
with newline and separator,",

它一个字符一个字符地读取文件,每次读取一行到一个向量(字符串),因此适合于非常大的文件。

使用

迭代直到返回空行(文件结束)。行是一个向量,其中每个条目都是一个CSV列。

read_csv_t csv;
csv.open("../test.csv");
std::vector<std::string> row;
while (true)
{
  row = csv.read_row();
  if (row.size() == 0)
  {
    break;
  }
}

类声明

class read_csv_t
{
public:
  read_csv_t();
  int open(const std::string &file_name);
  std::vector<std::string> read_row();
private:
  std::ifstream m_ifs;
};

实现

std::vector<std::string> read_csv_t::read_row()
{
  bool quote_mode = false;
  std::vector<std::string> row;
  std::string column;
  char c;
  while (m_ifs.get(c))
  {
    switch (c)
    {
      /////////////////////////////////////////////////////////////////////////////////////////////////////
      //separator ',' detected. 
      //in quote mode add character to column
      //push column if not in quote mode
      /////////////////////////////////////////////////////////////////////////////////////////////////////

    case ',':
      if (quote_mode == true)
      {
        column += c;
      }
      else
      {
        row.push_back(column);
        column.clear();
      }
      break;

      /////////////////////////////////////////////////////////////////////////////////////////////////////
      //quote '"' detected. 
      //toggle quote mode
      /////////////////////////////////////////////////////////////////////////////////////////////////////

    case '"':
      quote_mode = !quote_mode;
      break;

      /////////////////////////////////////////////////////////////////////////////////////////////////////
      //line end detected
      //in quote mode add character to column
      //return row if not in quote mode
      /////////////////////////////////////////////////////////////////////////////////////////////////////

    case '\n':
    case '\r':
      if (quote_mode == true)
      {
        column += c;
      }
      else
      {
        return row;
      }
      break;

      /////////////////////////////////////////////////////////////////////////////////////////////////////
      //default, add character to column
      /////////////////////////////////////////////////////////////////////////////////////////////////////

    default:
      column += c;
      break;
    }
  }

  //return empty vector if end of file detected 
  m_ifs.close();
  std::vector<std::string> v;
  return v;
}

另一个CSV I/O库可以在这里找到:

http://code.google.com/p/fast-cpp-csv-parser/

#include "csv.h"

int main(){
  io::CSVReader<3> in("ram.csv");
  in.read_header(io::ignore_extra_column, "vendor", "size", "speed");
  std::string vendor; int size; double speed;
  while(in.read_row(vendor, size, speed)){
    // do stuff with the data
  }
}

我写了一个很好的解析CSV文件的方法,我认为我应该把它作为一个答案:

#include <algorithm>
#include <fstream>
#include <iostream>
#include <stdlib.h>
#include <stdio.h>

struct CSVDict
{
  std::vector< std::string > inputImages;
  std::vector< double > inputLabels;
};

/**
\brief Splits the string

\param str String to split
\param delim Delimiter on the basis of which splitting is to be done
\return results Output in the form of vector of strings
*/
std::vector<std::string> stringSplit( const std::string &str, const std::string &delim )
{
  std::vector<std::string> results;

  for (size_t i = 0; i < str.length(); i++)
  {
    std::string tempString = "";
    while ((str[i] != *delim.c_str()) && (i < str.length()))
    {
      tempString += str[i];
      i++;
    }
    results.push_back(tempString);
  }

  return results;
}

/**
\brief Parse the supplied CSV File and obtain Row and Column information. 

Assumptions:
1. Header information is in first row
2. Delimiters are only used to differentiate cell members

\param csvFileName The full path of the file to parse
\param inputColumns The string of input columns which contain the data to be used for further processing
\param inputLabels The string of input labels based on which further processing is to be done
\param delim The delimiters used in inputColumns and inputLabels
\return Vector of Vector of strings: Collection of rows and columns
*/
std::vector< CSVDict > parseCSVFile( const std::string &csvFileName, const std::string &inputColumns, const std::string &inputLabels, const std::string &delim )
{
  std::vector< CSVDict > return_CSVDict;
  std::vector< std::string > inputColumnsVec = stringSplit(inputColumns, delim), inputLabelsVec = stringSplit(inputLabels, delim);
  std::vector< std::vector< std::string > > returnVector;
  std::ifstream inFile(csvFileName.c_str());
  int row = 0;
  std::vector< size_t > inputColumnIndeces, inputLabelIndeces;
  for (std::string line; std::getline(inFile, line, '\n');)
  {
    CSVDict tempDict;
    std::vector< std::string > rowVec;
    line.erase(std::remove(line.begin(), line.end(), '"'), line.end());
    rowVec = stringSplit(line, delim);

    // for the first row, record the indeces of the inputColumns and inputLabels
    if (row == 0)
    {
      for (size_t i = 0; i < rowVec.size(); i++)
      {
        for (size_t j = 0; j < inputColumnsVec.size(); j++)
        {
          if (rowVec[i] == inputColumnsVec[j])
          {
            inputColumnIndeces.push_back(i);
          }
        }
        for (size_t j = 0; j < inputLabelsVec.size(); j++)
        {
          if (rowVec[i] == inputLabelsVec[j])
          {
            inputLabelIndeces.push_back(i);
          }
        }
      }
    }
    else
    {
      for (size_t i = 0; i < inputColumnIndeces.size(); i++)
      {
        tempDict.inputImages.push_back(rowVec[inputColumnIndeces[i]]);
      }
      for (size_t i = 0; i < inputLabelIndeces.size(); i++)
      {
        double test = std::atof(rowVec[inputLabelIndeces[i]].c_str());
        tempDict.inputLabels.push_back(std::atof(rowVec[inputLabelIndeces[i]].c_str()));
      }
      return_CSVDict.push_back(tempDict);
    }
    row++;
  }

  return return_CSVDict;
}

可以使用std::regex。

根据文件大小和可用内存,可以逐行读取,也可以完全在std::string中读取。

读取文件可以使用:

std::ifstream t("file.txt");
std::string sin((std::istreambuf_iterator<char>(t)),
                 std::istreambuf_iterator<char>());

然后你可以和这个相匹配,它实际上是根据你的需要定制的。

std::regex word_regex(",\\s]+");
auto what = 
    std::sregex_iterator(sin.begin(), sin.end(), word_regex);
auto wend = std::sregex_iterator();

std::vector<std::string> v;
for (;what!=wend ; wend) {
    std::smatch match = *what;
    v.push_back(match.str());
}

我的版本只使用标准c++ 11库。它很好地处理Excel CSV引用:

spam eggs,"foo,bar","""fizz buzz"""
1.23,4.567,-8.00E+09

代码是作为有限状态机编写的,每次只消耗一个字符。我认为这更容易解释。

#include <istream>
#include <string>
#include <vector>

enum class CSVState {
    UnquotedField,
    QuotedField,
    QuotedQuote
};

std::vector<std::string> readCSVRow(const std::string &row) {
    CSVState state = CSVState::UnquotedField;
    std::vector<std::string> fields {""};
    size_t i = 0; // index of the current field
    for (char c : row) {
        switch (state) {
            case CSVState::UnquotedField:
                switch (c) {
                    case ',': // end of field
                              fields.push_back(""); i++;
                              break;
                    case '"': state = CSVState::QuotedField;
                              break;
                    default:  fields[i].push_back(c);
                              break; }
                break;
            case CSVState::QuotedField:
                switch (c) {
                    case '"': state = CSVState::QuotedQuote;
                              break;
                    default:  fields[i].push_back(c);
                              break; }
                break;
            case CSVState::QuotedQuote:
                switch (c) {
                    case ',': // , after closing quote
                              fields.push_back(""); i++;
                              state = CSVState::UnquotedField;
                              break;
                    case '"': // "" -> "
                              fields[i].push_back('"');
                              state = CSVState::QuotedField;
                              break;
                    default:  // end of quote
                              state = CSVState::UnquotedField;
                              break; }
                break;
        }
    }
    return fields;
}

/// Read CSV file, Excel dialect. Accept "quoted fields ""with quotes"""
std::vector<std::vector<std::string>> readCSV(std::istream &in) {
    std::vector<std::vector<std::string>> table;
    std::string row;
    while (!in.eof()) {
        std::getline(in, row);
        if (in.bad() || in.fail()) {
            break;
        }
        auto fields = readCSVRow(row);
        table.push_back(fields);
    }
    return table;
}