我有一个熊猫DataFrame与“日期”列。现在我需要过滤掉DataFrame中日期在未来两个月之外的所有行。实际上,我只需要保留接下来两个月内的行。

实现这一目标的最佳方式是什么?


当前回答

你可以用pd。时间戳来执行查询和本地引用

import pandas as pd
import numpy as np

df = pd.DataFrame()
ts = pd.Timestamp

df['date'] = np.array(np.arange(10) + datetime.now().timestamp(), dtype='M8[s]')

print(df)
print(df.query('date > @ts("20190515T071320")')

输出

                 date
0 2019-05-15 07:13:16
1 2019-05-15 07:13:17
2 2019-05-15 07:13:18
3 2019-05-15 07:13:19
4 2019-05-15 07:13:20
5 2019-05-15 07:13:21
6 2019-05-15 07:13:22
7 2019-05-15 07:13:23
8 2019-05-15 07:13:24
9 2019-05-15 07:13:25


                 date
5 2019-05-15 07:13:21
6 2019-05-15 07:13:22
7 2019-05-15 07:13:23
8 2019-05-15 07:13:24
9 2019-05-15 07:13:25

看看DataFrame的pandas文档。查询,特别是提到局部变量引用udsing @前缀。在这种情况下,我们引用pd。使用本地别名ts来提供时间戳字符串

其他回答

用pyjanitor怎么样

它有很酷的功能。

pip后安装pyjanitor

import janitor

df_filtered = df.filter_date(your_date_column_name, start_date, end_date)

根据我的经验,前面的答案是不正确的,你不能传递一个简单的字符串,需要一个datetime对象。所以:

import datetime 
df.loc[datetime.date(year=2014,month=1,day=1):datetime.date(year=2014,month=2,day=1)]

如果你想使用.query()方法,这是另一种解决方案。

它允许你使用编写可读的代码,如.query(f"{start} < MyDate < {end}")的权衡,.query()解析字符串,列值必须是熊猫日期格式(这样。query()也可以理解)

df = pd.DataFrame({
     'MyValue': [1,2,3],
     'MyDate': pd.to_datetime(['2021-01-01','2021-01-02','2021-01-03'])
})
start = datetime.date(2021,1,1).strftime('%Y%m%d')
end = datetime.date(2021,1,3).strftime('%Y%m%d')
df.query(f"{start} < MyDate < {end}")

(下面是@Phillip Cloud的评论,@Retozi的回答)

如果你的日期是通过导入datetime包来标准化的,你可以简单地使用:

df[(df['date']>datetime.date(2016,1,1)) & (df['date']<datetime.date(2016,3,1))]  

使用datetime包来标准化你的日期字符串,你可以使用这个函数:

import datetime
datetime.datetime.strptime

你可以用pd。时间戳来执行查询和本地引用

import pandas as pd
import numpy as np

df = pd.DataFrame()
ts = pd.Timestamp

df['date'] = np.array(np.arange(10) + datetime.now().timestamp(), dtype='M8[s]')

print(df)
print(df.query('date > @ts("20190515T071320")')

输出

                 date
0 2019-05-15 07:13:16
1 2019-05-15 07:13:17
2 2019-05-15 07:13:18
3 2019-05-15 07:13:19
4 2019-05-15 07:13:20
5 2019-05-15 07:13:21
6 2019-05-15 07:13:22
7 2019-05-15 07:13:23
8 2019-05-15 07:13:24
9 2019-05-15 07:13:25


                 date
5 2019-05-15 07:13:21
6 2019-05-15 07:13:22
7 2019-05-15 07:13:23
8 2019-05-15 07:13:24
9 2019-05-15 07:13:25

看看DataFrame的pandas文档。查询,特别是提到局部变量引用udsing @前缀。在这种情况下,我们引用pd。使用本地别名ts来提供时间戳字符串