我需要一个函数,它接受一个列表并输出True,如果输入列表中的所有元素使用标准相等运算符计算彼此相等,否则输出False。

我觉得最好是遍历列表,比较相邻的元素,然后与所有结果布尔值。但我不知道最python的方法是什么。


当前回答

或者使用numpy的diff方法:

import numpy as np
def allthesame(l):
    return np.unique(l).shape[0]<=1

并呼吁:

print(allthesame([1,1,1]))

输出:

True

其他回答

如果你对一些更有可读性的东西感兴趣(但当然不是那么高效),你可以尝试:

def compare_lists(list1, list2):
    if len(list1) != len(list2): # Weed out unequal length lists.
        return False
    for item in list1:
        if item not in list2:
            return False
    return True

a_list_1 = ['apple', 'orange', 'grape', 'pear']
a_list_2 = ['pear', 'orange', 'grape', 'apple']

b_list_1 = ['apple', 'orange', 'grape', 'pear']
b_list_2 = ['apple', 'orange', 'banana', 'pear']

c_list_1 = ['apple', 'orange', 'grape']
c_list_2 = ['grape', 'orange']

print compare_lists(a_list_1, a_list_2) # Returns True
print compare_lists(b_list_1, b_list_2) # Returns False
print compare_lists(c_list_1, c_list_2) # Returns False

这是一种简单的方法:

result = mylist and all(mylist[0] == elem for elem in mylist)

这稍微复杂一点,它会引起函数调用开销,但语义更清楚地说明:

def all_identical(seq):
    if not seq:
        # empty list is False.
        return False
    first = seq[0]
    return all(first == elem for elem in seq)

或者使用numpy的diff方法:

import numpy as np
def allthesame(l):
    return np.all(np.diff(l)==0)

并呼吁:

print(allthesame([1,1,1]))

输出:

True

或者使用numpy的diff方法:

import numpy as np
def allthesame(l):
    return np.unique(l).shape[0]<=1

并呼吁:

print(allthesame([1,1,1]))

输出:

True

最佳答案

Twitter上有一个不错的帖子,介绍了实现all_equal()函数的各种方法。

给定一个列表输入,最好的提交是:

 t.count(t[0]) == len(t)  

其他方法

下面是线程的结果:

Have groupby() compare adjacent entries. This has an early-out for a mismatch, does not use extra memory, and it runs at C speed. g = itertools.groupby(s) next(g, True) and not next(g, False) Compare two slices offset from one another by one position. This uses extra memory but runs at C speed. s[1:] == s[:-1] Iterator version of slice comparison. It runs at C speed and does not use extra memory; however, the eq calls are expensive. all(map(operator.eq, s, itertools.islice(s, 1, None))) Compare the lowest and highest values. This runs at C speed, doesn't use extra memory, but does cost two inequality tests per datum. min(s) == max(s) # s must be non-empty Build a set. This runs at C speed and uses little extra memory but requires hashability and does not have an early-out. len(set(t))==1. At great cost, this handles NaNs and other objects with exotic equality relations. all(itertools.starmap(eq, itertools.product(s, repeat=2))) Pull out the first element and compare all the others to it, stopping at the first mismatch. Only disadvantage is that this doesn't run at C speed. it = iter(s) a = next(it, None) return all(a == b for b in it) Just count the first element. This is fast, simple, elegant. It runs at C speed, requires no additional memory, uses only equality tests, and makes only a single pass over the data. t.count(t[0]) == len(t)