Python有string.find()和string.rfind()来获取字符串中子字符串的索引。

我想知道是否有像string.find_all()这样的东西可以返回所有找到的索引(不仅是从开始的第一个索引,还是从结束的第一个索引)。

例如:

string = "test test test test"

print string.find('test') # 0
print string.rfind('test') # 15

#this is the goal
print string.find_all('test') # [0,5,10,15]

要统计出现次数,请参见计算字符串中子字符串出现的次数。


当前回答

def find_index(string, let):
    enumerated = [place  for place, letter in enumerate(string) if letter == let]
    return enumerated

例如:

find_index("hey doode find d", "d") 

返回:

[4, 7, 13, 15]

其他回答

我认为最干净的解决方法是没有库和yield:

def find_all_occurrences(string, sub):
    index_of_occurrences = []
    current_index = 0
    while True:
        current_index = string.find(sub, current_index)
        if current_index == -1:
            return index_of_occurrences
        else:
            index_of_occurrences.append(current_index)
            current_index += len(sub)

find_all_occurrences(string, substr)

注意:find()方法在找不到任何东西时返回-1

这是我使用re.finditer的技巧

import re

text = 'This is sample text to test if this pythonic '\
       'program can serve as an indexing platform for '\
       'finding words in a paragraph. It can give '\
       'values as to where the word is located with the '\
       'different examples as stated'

#  find all occurances of the word 'as' in the above text

find_the_word = re.finditer('as', text)

for match in find_the_word:
    print('start {}, end {}, search string \'{}\''.
          format(match.start(), match.end(), match.group()))

如果你只是寻找一个单一的字符,这是可行的:

string = "dooobiedoobiedoobie"
match = 'o'
reduce(lambda count, char: count + 1 if char == match else count, string, 0)
# produces 7

同时,

string = "test test test test"
match = "test"
len(string.split(match)) - 1
# produces 4

我的直觉是,这两个(尤其是#2)的性能都不太好。

python的方法是:

mystring = 'Hello World, this should work!'
find_all = lambda c,s: [x for x in range(c.find(s), len(c)) if c[x] == s]

# s represents the search string
# c represents the character string

find_all(mystring,'o')    # will return all positions of 'o'

[4, 7, 20, 26] 
>>> 

当在一份文件中寻找大量的关键词时,使用flash文本

from flashtext import KeywordProcessor
words = ['test', 'exam', 'quiz']
txt = 'this is a test'
kwp = KeywordProcessor()
kwp.add_keywords_from_list(words)
result = kwp.extract_keywords(txt, span_info=True)

在大量搜索词列表上,Flashtext比正则表达式运行得更快。