我的面试问题是这样的:

给定一个包含40亿个整数的输入文件,提供一种算法来生成一个文件中不包含的整数。假设您有1gb内存。如果你只有10mb的内存,你会怎么做。

我的分析:

文件大小为4×109×4 bytes = 16gb。

我们可以进行外部排序,从而知道整数的范围。

我的问题是,在已排序的大整数集中检测缺失整数的最佳方法是什么?

我的理解(看完所有答案后):

假设我们讨论的是32位整数,有232 = 4*109个不同的整数。

情况1:我们有1gb = 1 * 109 * 8位= 80亿位内存。

解决方案:

如果我们用一位表示一个不同的整数,这就足够了。我们不需要排序。

实现:

int radix = 8;
byte[] bitfield = new byte[0xffffffff/radix];
void F() throws FileNotFoundException{
    Scanner in = new Scanner(new FileReader("a.txt"));
    while(in.hasNextInt()){
        int n = in.nextInt();
        bitfield[n/radix] |= (1 << (n%radix));
    }

    for(int i = 0; i< bitfield.lenght; i++){
        for(int j =0; j<radix; j++){
            if( (bitfield[i] & (1<<j)) == 0) System.out.print(i*radix+j);
        }
    }
}

情形二:10mb内存= 10 * 106 * 8bits = 8000万bits

Solution: For all possible 16-bit prefixes, there are 216 number of integers = 65536, we need 216 * 4 * 8 = 2 million bits. We need build 65536 buckets. For each bucket, we need 4 bytes holding all possibilities because the worst case is all the 4 billion integers belong to the same bucket. Build the counter of each bucket through the first pass through the file. Scan the buckets, find the first one who has less than 65536 hit. Build new buckets whose high 16-bit prefixes are we found in step2 through second pass of the file Scan the buckets built in step3, find the first bucket which doesnt have a hit. The code is very similar to above one.

结论: 我们通过增加文件传递来减少内存。


为那些迟到的人澄清一下:这个问题,正如所问的,并不是说有一个整数没有包含在文件中——至少大多数人不是这么理解的。不过,评论线程中的许多评论都是关于任务的变化。不幸的是,把它引入评论线程的评论后来被它的作者删除了,所以现在看起来它的孤儿回复只是误解了一切。这很让人困惑,抱歉。


当前回答

好的,这并没有经过充分的思考,因为它假设文件中的整数遵循某种静态分布。显然他们不需要这样做,但即使这样,也应该试试这个:


有≈43亿个32位整数。我们不知道它们在文件中是如何分布的,但最糟糕的情况是具有最高香农熵的情况:均匀分布。在这种情况下,任何一个整数不出现在文件中的概率为

((2³²-1)/2³²)⁰⁰⁰⁰≈.4

The lower the Shannon entropy, the higher this probability gets on the average, but even for this worst case we have a chance of 90% to find a nonoccurring number after 5 guesses with random integers. Just create such numbers with a pseudorandom generator, store them in a list. Then read int after int and compare it to all of your guesses. When there's a match, remove this list entry. After having been through all of the file, chances are you will have more than one guess left. Use any of them. In the rare (10% even at worst case) event of no guess remaining, get a new set of random integers, perhaps more this time (10->99%).

内存消耗:几十个字节,复杂度:O(n),开销:neclectable,因为大部分时间将花费在不可避免的硬盘访问上,而不是比较int类型。 当我们不假设静态分布时,实际最坏的情况是每个整数都出现最大值。曾经,因为那时只有 1 - 4000000000/2³²≈6% 所有的整数都不会出现在文件中。因此,您需要更多的猜测,但这仍然不会消耗大量的内存。

其他回答

老问题了,但我想知道“非功能性”需求。在我看来,应该给出一个线索——如果这个问题是在其他地方问的,而不是在一本书里,然后继续讨论所有的可能性的利弊。通常情况下,这似乎是在工作面试中问的,让我困惑的是,在不知道软要求的情况下,不可能给出一个明确的答案,即。“查找缺失的数字一定非常快,因为它一秒钟要使用x次。”

我想这样的问题或许可以给出一个合理的答案。

我将所有数字归并排序到一个新文件中,每个int使用4个字节。当然,一开始做起来会很慢。但是它可以用很小的内存量来完成(你不需要把所有内存都保存在RAM中) 使用二进制搜索检查数字是否存在于预排序文件中。因为每个值仍然是4个字节,这没有问题

缺点:

文件大小 第一次排序很慢——但只需要一次

优点:

查找起来非常快

这又是一个非常适合写书的问题。但我认为,当要解决的问题还不完全清楚时,在寻求单一的最佳解决方案时,这是一个奇怪的问题。

为了完整起见,这里有另一个非常简单的解决方案,它很可能需要很长时间才能运行,但只使用很少的内存。

设所有可能的整数为从int_min到int_max的范围,和 bool isNotInFile(integer)一个函数,如果文件不包含某个整数,则返回true,否则返回false(通过将该特定整数与文件中的每个整数进行比较)

for (integer i = int_min; i <= int_max; ++i)
{
    if (isNotInFile(i)) {
        return i;
    }
}

给定一个包含40亿个整数的输入文件,提供一个算法 生成文件中不包含的整数。假设你 有1gib的内存。接着问如果只有你会怎么做 10内存MiB。 文件大小为4 * 109 * 4字节= 16gib

如果是32位无符号整数

0 <= Number < 2^32
0 <= Number < 4,294,967,296

我建议的解决方案是:c++不进行错误检查

#include <vector>
#include <fstream>
#include <iostream>
using namespace std;

int main ()
{
    const long SIZE = 1L << 32;

    std::vector<bool> checker(SIZE, false);

    std::ifstream infile("file.txt");  // TODO: error checking

    unsigned int num = 0;

    while (infile >> num)
    {
        checker[num] = true ;
    }

    infile.close();

    // print missing numbers

    for (long i = 0; i < SIZE; i++)
    {
        if (!checker[i])
            cout << i << endl ;
    }

    return 0;
}

复杂性

Space ~ 232 bits = 229 Bytes = 219 KB = 29 MB = 1/2 GB 时间~单次通过 完整性~是

从文件中删除空白和非数字字符,并追加1。您的文件现在包含原始文件中没有列出的单个数字。

来自Reddit,作者:Carbonetc。

您可以使用位标志来标记一个整数是否存在。

遍历整个文件后,扫描每个位以确定数字是否存在。

假设每个整数是32位,如果进行了位标记,它们将方便地放入1gb RAM中。