我的面试问题是这样的:

给定一个包含40亿个整数的输入文件,提供一种算法来生成一个文件中不包含的整数。假设您有1gb内存。如果你只有10mb的内存,你会怎么做。

我的分析:

文件大小为4×109×4 bytes = 16gb。

我们可以进行外部排序,从而知道整数的范围。

我的问题是,在已排序的大整数集中检测缺失整数的最佳方法是什么?

我的理解(看完所有答案后):

假设我们讨论的是32位整数,有232 = 4*109个不同的整数。

情况1:我们有1gb = 1 * 109 * 8位= 80亿位内存。

解决方案:

如果我们用一位表示一个不同的整数,这就足够了。我们不需要排序。

实现:

int radix = 8;
byte[] bitfield = new byte[0xffffffff/radix];
void F() throws FileNotFoundException{
    Scanner in = new Scanner(new FileReader("a.txt"));
    while(in.hasNextInt()){
        int n = in.nextInt();
        bitfield[n/radix] |= (1 << (n%radix));
    }

    for(int i = 0; i< bitfield.lenght; i++){
        for(int j =0; j<radix; j++){
            if( (bitfield[i] & (1<<j)) == 0) System.out.print(i*radix+j);
        }
    }
}

情形二:10mb内存= 10 * 106 * 8bits = 8000万bits

Solution: For all possible 16-bit prefixes, there are 216 number of integers = 65536, we need 216 * 4 * 8 = 2 million bits. We need build 65536 buckets. For each bucket, we need 4 bytes holding all possibilities because the worst case is all the 4 billion integers belong to the same bucket. Build the counter of each bucket through the first pass through the file. Scan the buckets, find the first one who has less than 65536 hit. Build new buckets whose high 16-bit prefixes are we found in step2 through second pass of the file Scan the buckets built in step3, find the first bucket which doesnt have a hit. The code is very similar to above one.

结论: 我们通过增加文件传递来减少内存。


为那些迟到的人澄清一下:这个问题,正如所问的,并不是说有一个整数没有包含在文件中——至少大多数人不是这么理解的。不过,评论线程中的许多评论都是关于任务的变化。不幸的是,把它引入评论线程的评论后来被它的作者删除了,所以现在看起来它的孤儿回复只是误解了一切。这很让人困惑,抱歉。


当前回答

检查输入文件的大小,然后输出任何过大而无法用该大小的文件表示的数字。这似乎是一个廉价的技巧,但它是一个创造性的解决面试问题的方法,它巧妙地避开了记忆问题,从技术上讲,它是O(n)。

void maxNum(ulong filesize)
{
    ulong bitcount = filesize * 8; //number of bits in file

    for (ulong i = 0; i < bitcount; i++)
    {
        Console.Write(9);
    }
}

应该打印10位计数- 1,这将永远大于2位计数。从技术上讲,你必须打败的数字是2 bitcount -(4 * 109 - 1),因为你知道文件中还有(40亿- 1)个其他整数,即使使用完美的压缩,它们也会占用至少1位。

其他回答

为了完整起见,这里有另一个非常简单的解决方案,它很可能需要很长时间才能运行,但只使用很少的内存。

设所有可能的整数为从int_min到int_max的范围,和 bool isNotInFile(integer)一个函数,如果文件不包含某个整数,则返回true,否则返回false(通过将该特定整数与文件中的每个整数进行比较)

for (integer i = int_min; i <= int_max; ++i)
{
    if (isNotInFile(i)) {
        return i;
    }
}

The simplest approach is to find the minimum number in the file, and return 1 less than that. This uses O(1) storage, and O(n) time for a file of n numbers. However, it will fail if number range is limited, which could make min-1 not-a-number. The simple and straightforward method of using a bitmap has already been mentioned. That method uses O(n) time and storage. A 2-pass method with 2^16 counting-buckets has also been mentioned. It reads 2*n integers, so uses O(n) time and O(1) storage, but it cannot handle datasets with more than 2^16 numbers. However, it's easily extended to (eg) 2^60 64-bit integers by running 4 passes instead of 2, and easily adapted to using tiny memory by using only as many bins as fit in memory and increasing the number of passes correspondingly, in which case run time is no longer O(n) but instead is O(n*log n). The method of XOR'ing all the numbers together, mentioned so far by rfrankel and at length by ircmaxell answers the question asked in stackoverflow#35185, as ltn100 pointed out. It uses O(1) storage and O(n) run time. If for the moment we assume 32-bit integers, XOR has a 7% probability of producing a distinct number. Rationale: given ~ 4G distinct numbers XOR'd together, and ca. 300M not in file, the number of set bits in each bit position has equal chance of being odd or even. Thus, 2^32 numbers have equal likelihood of arising as the XOR result, of which 93% are already in file. Note that if the numbers in file aren't all distinct, the XOR method's probability of success rises.

由于问题没有指定我们必须找到文件中不存在的最小数字,我们可以生成一个比输入文件本身更长的数字。:)

假设“整数”表示32位:10mb的空间足以让您计算输入文件中有多少个数字,具有任何给定的16位前缀,对于所有可能的16位前缀,在一次通过输入文件。至少有一个桶被击中的次数少于216次。执行第二次传递,以查找该bucket中哪些可能的数字已经被使用。

如果它意味着超过32位,但仍然是有限的大小:执行上述操作,忽略所有恰巧落在(有符号或无符号;32位范围。

如果“integer”指的是数学整数:通读输入一次,记录你见过的最长数字中最大的数字长度。当你完成后,输出最大值加1是一个多一位的随机数。(文件中的一个数字可能是一个大于10mb的大字节,但如果输入是一个文件,那么您至少可以表示任何适合它的长度)。

您可以使用位标志来标记一个整数是否存在。

遍历整个文件后,扫描每个位以确定数字是否存在。

假设每个整数是32位,如果进行了位标记,它们将方便地放入1gb RAM中。