你遇到过的源代码中最好的注释是什么?


当前回答

// Sorry dirty code

其他回答

在XSLT文件的头文件中:

DON'T TOUCH THIS SCRIPT -> XSLT is like arcane, black magic

我没有这个来源的副本,但我一直记得它:

//如果你想不明白,就不要读这篇文章

下面是一个必须声明的局部变量,只是为了将一个常量传递给库函数:

// This only exists because Scott doesn't know how to use const correctly

场景一:

return 0; // Happy ending

场景二:

int32_t Interpolate1DSignal(
  Array1D<float64>::Handle hfInputSamples,         // samples to be interpolated
  Array1D<float64>::Handle hfInterpolationFilter,  // polyphase filter coefficients,
  int32_t iFilterInterpolationFactor,              // # of "rows" in polyphase filter
  int32_t iFilterLength,                           // Length of each row in filter
  float64 fInterpolationFactor,                    // Factor to interpolate the
                                                   // signal by
  float64 fTimingOffset,                           // Offset into the signal (units   
                                                   // of samples)
  Array1D<float64>::Handle hfOutputSamples         // left as an exercise for the reader
);

从《雷神之锤III》的资料中,我在一些随机的帖子中偶然发现了这一点。该文件的完整源代码可以在这里找到。这是一种非常快速的求平方根倒数的方法。至于最好的评论呢?当然,这是一种常见的方法,但考虑到它附着在直线上,它的神奇之处在于它的伟大之处。

float Q_rsqrt( float number )
{
  long i;
  float x2, y;
  const float threehalfs = 1.5F;

  x2 = number * 0.5F;
  y  = number;
  i  = * ( long * ) &y;  // evil floating point bit level hacking
  i  = 0x5f3759df - ( i >> 1 ); // what the fuck?
  y  = * ( float * ) &i;
  y  = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  // y  = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed

  #ifndef Q3_VM
  #ifdef __linux__
    assert( !isnan(y) ); // bk010122 - FPE?
  #endif
  #endif
  return y;
}