我如何计算以下数组中的0和1的数量?

y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

y.count(0)为:

numpy。Ndarray对象没有属性计数


当前回答

dict(zip(*numpy.unique(y, return_counts=True)))

只是复制了Seppo Enarvi的评论,这应该是一个正确的答案

其他回答

如果你不想使用numpy或collections模块,你可以使用字典:

d = dict()
a = [0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]
for item in a:
    try:
        d[item]+=1
    except KeyError:
        d[item]=1

结果:

>>>d
{0: 8, 1: 4}

当然,你也可以使用if/else语句。 我认为Counter函数做了几乎相同的事情,但这个更透明。

老实说,我发现最容易转换为熊猫系列或DataFrame:

import pandas as pd
import numpy as np

df = pd.DataFrame({'data':np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])})
print df['data'].value_counts()

或者是Robert Muil的一句俏皮话:

pd.Series([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]).value_counts()

这个函数返回变量在数组中出现的次数:

def count(array,variable):
    number = 0
    for i in range(array.shape[0]):
        for j in range(array.shape[1]):
            if array[i,j] == variable:
                number += 1
    return number

您可以使用字典理解来创建简洁的一行代码。更多关于字典理解的内容可以在这里找到

>>> counts = {int(value): list(y).count(value) for value in set(y)}
>>> print(counts)
{0: 8, 1: 4}

这将创建一个字典,将ndarray中的值作为键,并将值的计数分别作为键的值。

当您想要计算该格式数组中某个值的出现次数时,这种方法就可以工作。

使用numpy怎么样?count_non0,类似的

>>> import numpy as np
>>> y = np.array([1, 2, 2, 2, 2, 0, 2, 3, 3, 3, 0, 0, 2, 2, 0])

>>> np.count_nonzero(y == 1)
1
>>> np.count_nonzero(y == 2)
7
>>> np.count_nonzero(y == 3)
3