当我们必须预测分类(或离散)结果的值时,我们使用逻辑回归。我相信我们使用线性回归来预测给定输入值的结果值。
那么,这两种方法有什么不同呢?
当我们必须预测分类(或离散)结果的值时,我们使用逻辑回归。我相信我们使用线性回归来预测给定输入值的结果值。
那么,这两种方法有什么不同呢?
当前回答
简单地说,如果在线性回归模型中有更多的测试用例到达,这些测试用例远离预测y=1和y=0的阈值(例如=0.5)。在这种情况下,假设就会改变,变得更糟。因此,线性回归模型不适用于分类问题。
另一个问题是,如果分类是y=0和y=1, h(x)可以是> 1或< 0。因此,我们使用Logistic回归0<=h(x)<=1。
其他回答
简单地说,如果在线性回归模型中有更多的测试用例到达,这些测试用例远离预测y=1和y=0的阈值(例如=0.5)。在这种情况下,假设就会改变,变得更糟。因此,线性回归模型不适用于分类问题。
另一个问题是,如果分类是y=0和y=1, h(x)可以是> 1或< 0。因此,我们使用Logistic回归0<=h(x)<=1。
逻辑回归用于预测分类输出,如是/否,低/中/高等。你基本上有2种类型的逻辑回归二元逻辑回归(是/否,批准/不批准)或多类逻辑回归(低/中/高,0-9等数字)
另一方面,线性回归是因变量(y)是连续的。 Y = mx + c是一个简单的线性回归方程(m =斜率,c是Y截距)。多元线性回归有不止一个自变量(x1,x2,x3,…)等)
简而言之: 线性回归给出连续的输出。即在一个值范围内的任何值。 逻辑回归给出离散的输出。即Yes/No, 0/1类型的输出。
它们在解决解决方案方面非常相似,但正如其他人所说,一个(逻辑回归)是用于预测类别“适合”(Y/N或1/0),另一个(线性回归)是用于预测值。
所以如果你想预测你是否有癌症Y/N(或概率)-使用逻辑。如果你想知道你能活多少年,用线性回归吧!
| Basis | Linear | Logistic |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Basic | The data is modelled using a straight line. | The probability of some obtained event is represented as a linear function of a combination of predictor variables. |
| Linear relationship between dependent and independent variables | Is required | Not required |
| The independent variable | Could be correlated with each other. (Specially in multiple linear regression) | Should not be correlated with each other (no multicollinearity exist). |