当我们必须预测分类(或离散)结果的值时,我们使用逻辑回归。我相信我们使用线性回归来预测给定输入值的结果值。
那么,这两种方法有什么不同呢?
当我们必须预测分类(或离散)结果的值时,我们使用逻辑回归。我相信我们使用线性回归来预测给定输入值的结果值。
那么,这两种方法有什么不同呢?
当前回答
非常同意以上的评论。 除此之外,还有一些不同之处
在线性回归中,残差被假设为正态分布。 在逻辑回归中,残差需要是独立的,但不是正态分布。
线性回归假设解释变量值的恒定变化导致响应变量的恒定变化。 如果响应变量的值代表概率(在逻辑回归中),则此假设不成立。
广义线性模型(GLM)不假设因变量和自变量之间存在线性关系。但在logit模型中,它假设link函数与自变量之间是线性关系。
其他回答
在线性回归中,结果是连续的,而在逻辑回归中,结果只有有限数量的可能值(离散的)。
例子: 在一种情况下,x的给定值是一个地块的平方英尺大小,然后预测y的比率是在线性回归下。
相反,如果你想根据面积预测地块是否会以超过30万卢比的价格出售,你将使用逻辑回归。可能的输出是Yes,该地块的售价将超过30万卢比,或者No。
在线性回归中,结果(因变量)是连续的。它可以有无限个可能值中的任意一个。在逻辑回归中,结果(因变量)只有有限数量的可能值。
例如,如果X包含以平方英尺为单位的房屋面积,而Y包含这些房屋的相应销售价格,您可以使用线性回归来预测销售价格作为房屋大小的函数。虽然可能的销售价格实际上可能没有任何值,但有很多可能的值,因此可以选择线性回归模型。
相反,如果你想根据房子的大小来预测房子是否会卖到20万美元以上,你会使用逻辑回归。可能的输出是Yes,房子将以超过20万美元的价格出售,或者No,房子不会。
逻辑回归用于预测分类输出,如是/否,低/中/高等。你基本上有2种类型的逻辑回归二元逻辑回归(是/否,批准/不批准)或多类逻辑回归(低/中/高,0-9等数字)
另一方面,线性回归是因变量(y)是连续的。 Y = mx + c是一个简单的线性回归方程(m =斜率,c是Y截距)。多元线性回归有不止一个自变量(x1,x2,x3,…)等)
Regression means continuous variable, Linear means there is linear relation between y and x. Ex= You are trying to predict salary from no of years of experience. So here salary is independent variable(y) and yrs of experience is dependent variable(x). y=b0+ b1*x1 We are trying to find optimum value of constant b0 and b1 which will give us best fitting line for your observation data. It is a equation of line which gives continuous value from x=0 to very large value. This line is called Linear regression model.
逻辑回归是一种分类技术。不要被术语回归所误导。这里我们预测y=0还是1。
在这里,我们首先需要从下面的公式中找出给定x的p(y=1) (y=1的w概率)。
概率p通过下面的公式与y相关
Ex=我们可以将患癌几率超过50%的肿瘤分类为1,将患癌几率低于50%的肿瘤分类为0。
这里红点被预测为0,而绿点被预测为1。
简单地说,如果在线性回归模型中有更多的测试用例到达,这些测试用例远离预测y=1和y=0的阈值(例如=0.5)。在这种情况下,假设就会改变,变得更糟。因此,线性回归模型不适用于分类问题。
另一个问题是,如果分类是y=0和y=1, h(x)可以是> 1或< 0。因此,我们使用Logistic回归0<=h(x)<=1。