我是TensorFlow的新手。我搞不懂tf的区别。占位符和tf.Variable。在我看来,tf。占位符用于输入数据,tf。变量用于存储数据的状态。这就是我所知道的一切。
谁能给我详细解释一下他们的不同之处吗?特别是,什么时候使用tf。变量和何时使用tf.placeholder?
我是TensorFlow的新手。我搞不懂tf的区别。占位符和tf.Variable。在我看来,tf。占位符用于输入数据,tf。变量用于存储数据的状态。这就是我所知道的一切。
谁能给我详细解释一下他们的不同之处吗?特别是,什么时候使用tf。变量和何时使用tf.placeholder?
当前回答
最明显的区别是。变量和tf。占位符是
使用变量保存和更新参数。变量是 包含张量的内存缓冲区。它们必须明确 已初始化,可以在培训期间和培训结束后保存到磁盘。你 可以稍后恢复保存的值以练习或分析模型。
变量的初始化使用sess.run(tf.global_variables_initializer())完成。另外,在创建变量时,你需要将一个Tensor作为它的初始值传递给variable()构造函数,当你创建一个变量时,你总是知道它的形状。
另一方面,您不能更新占位符。它们也不应该被初始化,但因为它们是一个有一个张量的承诺,你需要将值输入到它们sess.run(<op>, {a: <some_val>})。最后,与变量相比,占位符可能不知道形状。您可以提供部分维度,也可以什么都不提供。
还有其他区别:
the values inside the variable can be updated during optimizations variables can be shared, and can be non-trainable the values inside the variable can be stored after training when the variable is created, 3 ops are added to a graph (variable op, initializer op, ops for the initial value) placeholder is a function, Variable is a class (hence an uppercase) when you use TF in a distributed environment, variables are stored in a special place (parameter server) and are shared between the workers.
有趣的是,不仅可以提供占位符。您可以将值提供给变量,甚至是常量。
其他回答
博士TL;
变量
为了学习参数 价值观可以从培训中获得 初始值是必需的(通常是随机的)
占位符
为数据分配存储(例如在馈送期间用于图像像素数据) 初始值不是必需的(但可以设置,参见tf.placeholder_with_default)
在TensorFlow中,变量只是另一个张量(比如tf。常量或tf.placeholder)。碰巧变量可以通过计算来修改。特遣部队。占位符用于将在运行时提供给计算的外部输入(例如训练数据)。特遣部队。变量用于作为计算的一部分并将被计算修改的输入(例如神经网络的权重)。
示例代码片段:
import numpy as np
import tensorflow as tf
### Model parameters ###
W = tf.Variable([.3], tf.float32)
b = tf.Variable([-.3], tf.float32)
### Model input and output ###
x = tf.placeholder(tf.float32)
linear_model = W * x + b
y = tf.placeholder(tf.float32)
### loss ###
loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares
### optimizer ###
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
### training data ###
x_train = [1,2,3,4]
y_train = [0,-1,-2,-3]
### training loop ###
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # reset values to wrong
for i in range(1000):
sess.run(train, {x:x_train, y:y_train})
顾名思义,占位符是稍后提供一个值的承诺。
变量只是训练参数(W(矩阵),b(偏差),与您在日常编程中使用的正常变量相同,培训师在每次运行/步骤中更新/修改。
虽然占位符不需要任何初始值,当你创建x和y时,TF不分配任何内存,相反,当你在sesss .run()中使用feed_dict提供占位符时,TensorFlow将为它们分配适当大小的内存(x和y) -这种不受约束的特性允许我们提供任何大小和形状的数据。
简而言之:
Variable -是一个你希望训练器(例如GradientDescentOptimizer)在每一步之后更新的参数。
占位符演示-
a = tf.placeholder(tf.float32)
b = tf.placeholder(tf.float32)
adder_node = a + b # + provides a shortcut for tf.add(a, b)
执行:
print(sess.run(adder_node, {a: 3, b:4.5}))
print(sess.run(adder_node, {a: [1,3], b: [2, 4]}))
结果是输出
7.5
[ 3. 7.]
在第一种情况下,3和4.5将分别传递给a和b,然后传递给adder_node输出7。在第二种情况下,有一个提要列表,第一步1和2将被添加,接下来的3和4 (a和b)。
相关阅读:
特遣部队。占位符doc。 特遣部队。变量doc。 变量VS占位符。
变量
TensorFlow变量是表示程序操纵的共享持久状态的最佳方式。变量是通过tf操作的。变量类。内部是一个tf。变量存储一个持久张量。特定的操作允许你读取和修改这个张量的值。这些修改在多个tf中可见。会话,因此多个工作人员可以看到tf.Variable的相同值。变量在使用前必须初始化。
例子:
x = tf.Variable(3, name="x")
y = tf.Variable(4, name="y")
f = x*x*y + y + 2
这将创建一个计算图。变量(x和y)可以被初始化,函数(f)在一个tensorflow会话中被计算,如下所示:
with tf.Session() as sess:
x.initializer.run()
y.initializer.run()
result = f.eval()
print(result)
42
占位符
占位符是一个节点(与变量相同),其值可以在将来初始化。这些节点基本上在运行时输出分配给它们的值。占位符节点可以使用tf.placeholder()类来分配,你可以为它提供参数,比如变量的类型和/或它的形状。占位符广泛用于表示机器学习模型中的训练数据集,因为训练数据集不断变化。
例子:
A = tf.placeholder(tf.float32, shape=(None, 3))
B = A + 5
注意:维度的“None”表示“任何大小”。
with tf.Session as sess:
B_val_1 = B.eval(feed_dict={A: [[1, 2, 3]]})
B_val_2 = B.eval(feed_dict={A: [[4, 5, 6], [7, 8, 9]]})
print(B_val_1)
[[6. 7. 8.]]
print(B_val_2)
[[9. 10. 11.]
[12. 13. 14.]]
引用:
https://www.tensorflow.org/guide/variables https://www.tensorflow.org/api_docs/python/tf/placeholder O'Reilly:使用Scikit-Learn和Tensorflow进行动手机器学习
Think of Variable in tensorflow as a normal variables which we use in programming languages. We initialize variables, we can modify it later as well. Whereas placeholder doesn’t require initial value. Placeholder simply allocates block of memory for future use. Later, we can use feed_dict to feed the data into placeholder. By default, placeholder has an unconstrained shape, which allows you to feed tensors of different shapes in a session. You can make constrained shape by passing optional argument -shape, as I have done below.
x = tf.placeholder(tf.float32,(3,4))
y = x + 2
sess = tf.Session()
print(sess.run(y)) # will cause an error
s = np.random.rand(3,4)
print(sess.run(y, feed_dict={x:s}))
在执行机器学习任务时,大多数时候我们不知道行数,但(让我们假设)我们知道特征或列的数量。在这种情况下,我们可以使用None。
x = tf.placeholder(tf.float32, shape=(None,4))
现在,在运行时,我们可以输入任意4列任意行数的矩阵。
此外,占位符用于输入数据(它们是一种我们用来为模型提供信息的变量),其中变量是我们随时间训练的权重等参数。