如何在python中找到扩展名为.txt的目录中的所有文件?
当前回答
我喜欢os.walk():
import os
for root, dirs, files in os.walk(dir):
for f in files:
if os.path.splitext(f)[1] == '.txt':
fullpath = os.path.join(root, f)
print(fullpath)
或者使用生成器:
import os
fileiter = (os.path.join(root, f)
for root, _, files in os.walk(dir)
for f in files)
txtfileiter = (f for f in fileiter if os.path.splitext(f)[1] == '.txt')
for txt in txtfileiter:
print(txt)
其他回答
用一团。
>>> import glob
>>> glob.glob('./*.txt')
['./outline.txt', './pip-log.txt', './test.txt', './testingvim.txt']
使用Python OS模块查找具有特定扩展名的文件。
简单的例子如下:
import os
# This is the path where you want to search
path = r'd:'
# this is extension you want to detect
extension = '.txt' # this can be : .jpg .png .xls .log .....
for root, dirs_list, files_list in os.walk(path):
for file_name in files_list:
if os.path.splitext(file_name)[-1] == extension:
file_name_path = os.path.join(root, file_name)
print file_name
print file_name_path # This is the full path of the filter file
要从同一个目录中名为“data”的文件夹中获取一个“。txt”文件名的数组,我通常使用以下简单的代码行:
import os
fileNames = [fileName for fileName in os.listdir("data") if fileName.endswith(".txt")]
Python v3.5 +
使用os的快速方法。递归函数中的Scandir。在文件夹和子文件夹中搜索具有指定扩展名的所有文件。它的速度非常快,甚至可以找到10,000个文件。
我还包含了一个将输出转换为Pandas数据框架的函数。
import os
import re
import pandas as pd
import numpy as np
def findFilesInFolderYield(path, extension, containsTxt='', subFolders = True, excludeText = ''):
""" Recursive function to find all files of an extension type in a folder (and optionally in all subfolders too)
path: Base directory to find files
extension: File extension to find. e.g. 'txt'. Regular expression. Or 'ls\d' to match ls1, ls2, ls3 etc
containsTxt: List of Strings, only finds file if it contains this text. Ignore if '' (or blank)
subFolders: Bool. If True, find files in all subfolders under path. If False, only searches files in the specified folder
excludeText: Text string. Ignore if ''. Will exclude if text string is in path.
"""
if type(containsTxt) == str: # if a string and not in a list
containsTxt = [containsTxt]
myregexobj = re.compile('\.' + extension + '$') # Makes sure the file extension is at the end and is preceded by a .
try: # Trapping a OSError or FileNotFoundError: File permissions problem I believe
for entry in os.scandir(path):
if entry.is_file() and myregexobj.search(entry.path): #
bools = [True for txt in containsTxt if txt in entry.path and (excludeText == '' or excludeText not in entry.path)]
if len(bools)== len(containsTxt):
yield entry.stat().st_size, entry.stat().st_atime_ns, entry.stat().st_mtime_ns, entry.stat().st_ctime_ns, entry.path
elif entry.is_dir() and subFolders: # if its a directory, then repeat process as a nested function
yield from findFilesInFolderYield(entry.path, extension, containsTxt, subFolders)
except OSError as ose:
print('Cannot access ' + path +'. Probably a permissions error ', ose)
except FileNotFoundError as fnf:
print(path +' not found ', fnf)
def findFilesInFolderYieldandGetDf(path, extension, containsTxt, subFolders = True, excludeText = ''):
""" Converts returned data from findFilesInFolderYield and creates and Pandas Dataframe.
Recursive function to find all files of an extension type in a folder (and optionally in all subfolders too)
path: Base directory to find files
extension: File extension to find. e.g. 'txt'. Regular expression. Or 'ls\d' to match ls1, ls2, ls3 etc
containsTxt: List of Strings, only finds file if it contains this text. Ignore if '' (or blank)
subFolders: Bool. If True, find files in all subfolders under path. If False, only searches files in the specified folder
excludeText: Text string. Ignore if ''. Will exclude if text string is in path.
"""
fileSizes, accessTimes, modificationTimes, creationTimes , paths = zip(*findFilesInFolderYield(path, extension, containsTxt, subFolders))
df = pd.DataFrame({
'FLS_File_Size':fileSizes,
'FLS_File_Access_Date':accessTimes,
'FLS_File_Modification_Date':np.array(modificationTimes).astype('timedelta64[ns]'),
'FLS_File_Creation_Date':creationTimes,
'FLS_File_PathName':paths,
})
df['FLS_File_Modification_Date'] = pd.to_datetime(df['FLS_File_Modification_Date'],infer_datetime_format=True)
df['FLS_File_Creation_Date'] = pd.to_datetime(df['FLS_File_Creation_Date'],infer_datetime_format=True)
df['FLS_File_Access_Date'] = pd.to_datetime(df['FLS_File_Access_Date'],infer_datetime_format=True)
return df
ext = 'txt' # regular expression
containsTxt=[]
path = 'C:\myFolder'
df = findFilesInFolderYieldandGetDf(path, ext, containsTxt, subFolders = True)
Python有所有工具可以做到这一点:
import os
the_dir = 'the_dir_that_want_to_search_in'
all_txt_files = filter(lambda x: x.endswith('.txt'), os.listdir(the_dir))
推荐文章
- 如何读取文件的前N行?
- 如何删除matplotlib中的顶部和右侧轴?
- 解析.py文件,读取AST,修改它,然后写回修改后的源代码
- Visual Studio Code:如何调试Python脚本的参数
- 使用元组/列表等等。从输入vs直接引用类型如list/tuple/etc
- 结合conda环境。Yml和PIP requirements.txt
- 将命名元组转换为字典
- 如何使x轴和y轴的刻度相等呢?
- Numpy在这里函数多个条件
- 在Python中,使用argparse只允许正整数
- 如何排序mongodb与pymongo
- 不可变与可变类型
- 列表是线程安全的吗?
- 操作系统。makdirs在我的路径上不理解“~”
- 如何在Django模板中获得我的网站的域名?