我有一个很少列的熊猫数据帧。

现在我知道某些行是基于某个列值的异常值。

例如

列“Vol”的所有值都在12xx左右,其中一个值是4000(离群值)。

现在我想排除那些Vol列像这样的行。

所以,本质上,我需要在数据帧上放一个过滤器,这样我们就可以选择所有的行,其中某一列的值距离平均值在3个标准差之内。

实现这一点的优雅方式是什么?


当前回答

另一种选择是转换数据,以减轻异常值的影响。你可以通过winsorize你的数据来做到这一点。

import pandas as pd
from scipy.stats import mstats
%matplotlib inline

test_data = pd.Series(range(30))
test_data.plot()

# Truncate values to the 5th and 95th percentiles
transformed_test_data = pd.Series(mstats.winsorize(test_data, limits=[0.05, 0.05])) 
transformed_test_data.plot()

其他回答

这个答案类似于@tanemaki提供的答案,但使用了lambda表达式而不是scipy stats。

df = pd.DataFrame(np.random.randn(100, 3), columns=list('ABC'))

standard_deviations = 3
df[df.apply(lambda x: np.abs(x - x.mean()) / x.std() < standard_deviations)
   .all(axis=1)]

要过滤只有一个列的数据帧(例如:B)在三个标准差之内:

df[((df['B'] - df['B'].mean()) / df['B'].std()).abs() < standard_deviations]

关于如何在滚动的基础上应用这个z-score:滚动z-score应用于pandas数据框架

去掉离群值的函数

def drop_outliers(df, field_name):
    distance = 1.5 * (np.percentile(df[field_name], 75) - np.percentile(df[field_name], 25))
    df.drop(df[df[field_name] > distance + np.percentile(df[field_name], 75)].index, inplace=True)
    df.drop(df[df[field_name] < np.percentile(df[field_name], 25) - distance].index, inplace=True)
#------------------------------------------------------------------------------
# accept a dataframe, remove outliers, return cleaned data in a new dataframe
# see http://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
#------------------------------------------------------------------------------
def remove_outlier(df_in, col_name):
    q1 = df_in[col_name].quantile(0.25)
    q3 = df_in[col_name].quantile(0.75)
    iqr = q3-q1 #Interquartile range
    fence_low  = q1-1.5*iqr
    fence_high = q3+1.5*iqr
    df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)]
    return df_out

你可以使用布尔掩码:

import pandas as pd

def remove_outliers(df, q=0.05):
    upper = df.quantile(1-q)
    lower = df.quantile(q)
    mask = (df < upper) & (df > lower)
    return mask

t = pd.DataFrame({'train': [1,1,2,3,4,5,6,7,8,9,9],
                  'y': [1,0,0,1,1,0,0,1,1,1,0]})

mask = remove_outliers(t['train'], 0.1)

print(t[mask])

输出:

   train  y
2      2  0
3      3  1
4      4  1
5      5  0
6      6  0
7      7  1
8      8  1

下面是一个包含数据和2组的完整示例:

进口:

from StringIO import StringIO
import pandas as pd
#pandas config
pd.set_option('display.max_rows', 20)

有2个组的数据示例:G1:Group 1。G2:第二组:

TESTDATA = StringIO("""G1;G2;Value
1;A;1.6
1;A;5.1
1;A;7.1
1;A;8.1

1;B;21.1
1;B;22.1
1;B;24.1
1;B;30.6

2;A;40.6
2;A;51.1
2;A;52.1
2;A;60.6

2;B;80.1
2;B;70.6
2;B;90.6
2;B;85.1
""")

读取文本数据到pandas数据框架:

df = pd.read_csv(TESTDATA, sep=";")

使用标准偏差定义离群值

stds = 1.0
outliers = df[['G1', 'G2', 'Value']].groupby(['G1','G2']).transform(
           lambda group: (group - group.mean()).abs().div(group.std())) > stds

定义过滤后的数据值和异常值:

dfv = df[outliers.Value == False]
dfo = df[outliers.Value == True]

打印结果:

print '\n'*5, 'All values with decimal 1 are non-outliers. In the other hand, all values with 6 in the decimal are.'
print '\nDef DATA:\n%s\n\nFiltred Values with %s stds:\n%s\n\nOutliers:\n%s' %(df, stds, dfv, dfo)