用c++找出质数最快的算法是什么?我已经使用了sieve的算法,但我仍然希望它更快!


当前回答

I found this solution pretty fast but it comes with consequences, So this is called Fermat's Little Theorem. If we take any number p and put that in (1^p)-1 or (2^p)-2...(n^p)-n likewise and the number we get is divisible by p then it's a prime number. Talking about consequences, it's not 100% right solution. There are some numbers like 341(not prime) it will pass the test with (2^341)-2 but fails on (3^341)-3, so it's called a composite number. We can have two or more checks to make sure they pass all of them. There is one more kind of number which are not prime but also pass all the test case:( 561, 1729 Ramanujan taxi no etc.

好消息是:在前250亿个数字中,只有2183不符合这个要求 的情况。

#include <iostream>
#include <math.h>
using namespace std;

int isPrime(int p)
{
    int tc = pow(2, p) - 2;
    if (tc % p == 0)
    {
        cout << p << "is Prime ";
    }
    else
    {
        cout << p << "is Not Prime";
    }
    return 0;
}

int main()
{
    int p;
    cin >> p;
    isPrime(p);
    return 0;
} 

其他回答

一个非常快速的Atkin Sieve的实现是Dan Bernstein的primegen。这个筛子比埃拉托色尼的筛子更有效率。他的页面有一些基准测试信息。

#include<stdio.h>
main()
{
    long long unsigned x,y,b,z,e,r,c;
    scanf("%llu",&x);
    if(x<2)return 0;
    scanf("%llu",&y);
    if(y<x)return 0;
    if(x==2)printf("|2");
    if(x%2==0)x+=1;
    if(y%2==0)y-=1;
    for(b=x;b<=y;b+=2)
    {
        z=b;e=0;
        for(c=2;c*c<=z;c++)
        {
            if(z%c==0)e++;
            if(e>0)z=3;
        }
        if(e==0)
        {
            printf("|%llu",z);
            r+=1;
        }
    }
    printf("|\n%llu outputs...\n",r);
    scanf("%llu",&r);
}    

I know it's somewhat later, but this could be useful to people arriving here from searches. Anyway, here's some JavaScript that relies on the fact that only prime factors need to be tested, so the earlier primes generated by the code are re-used as test factors for later ones. Of course, all even and mod 5 values are filtered out first. The result will be in the array P, and this code can crunch 10 million primes in under 1.5 seconds on an i7 PC (or 100 million in about 20). Rewritten in C it should be very fast.

var P = [1, 2], j, k, l = 3

for (k = 3 ; k < 10000000 ; k += 2)
{
  loop: if (++l < 5)
  {
    for (j = 2 ; P[j] <= Math.sqrt(k) ; ++j)
      if (k % P[j] == 0) break loop

    P[P.length] = k
  }
  else l = 0
}

另一个Python实现比死亡面具推销员的答案更直接,也更快:

import numpy as np

def prime_numbers(limit: int) -> list[int]:
    """Provide a list of all prime numbers <= the limit."""
    is_prime = np.full((limit + 1, ), True)
    is_prime[0:2] = False
    for n in range(2, limit + 1):
        if is_prime[n]:
            is_prime[n**2::n] = False
    return list(np.where(is_prime)[0])

你可以进一步优化,例如,排除2,或者硬编码更多质数,但我想保持简单。


*示例运行时比较(注意:我使用了其他实现的优化形式,见我的评论):

I found this solution pretty fast but it comes with consequences, So this is called Fermat's Little Theorem. If we take any number p and put that in (1^p)-1 or (2^p)-2...(n^p)-n likewise and the number we get is divisible by p then it's a prime number. Talking about consequences, it's not 100% right solution. There are some numbers like 341(not prime) it will pass the test with (2^341)-2 but fails on (3^341)-3, so it's called a composite number. We can have two or more checks to make sure they pass all of them. There is one more kind of number which are not prime but also pass all the test case:( 561, 1729 Ramanujan taxi no etc.

好消息是:在前250亿个数字中,只有2183不符合这个要求 的情况。

#include <iostream>
#include <math.h>
using namespace std;

int isPrime(int p)
{
    int tc = pow(2, p) - 2;
    if (tc % p == 0)
    {
        cout << p << "is Prime ";
    }
    else
    {
        cout << p << "is Not Prime";
    }
    return 0;
}

int main()
{
    int p;
    cin >> p;
    isPrime(p);
    return 0;
}