用c++找出质数最快的算法是什么?我已经使用了sieve的算法,但我仍然希望它更快!


当前回答

你的问题是判断一个特定的数字是否是质数吗?然后你需要一个质数测试(很简单)。或者你需要一个给定数字之前的所有质数吗?在这种情况下,素筛是很好的(简单,但需要内存)。或者你需要一个数的质因数?这将需要分解(如果你真的想要最有效的方法,对于较大的数字很难)。你看到的数字有多大?16位?32位?更大的吗?

一种聪明而有效的方法是预先计算质数表,并使用位级编码将它们保存在文件中。文件被认为是一个长位向量,而位n表示整数n。如果n是素数,则其位设置为1,否则为0。查找非常快(您可以计算字节偏移量和位掩码),并且不需要在内存中加载文件。

其他回答

这取决于您的应用程序。这里有一些注意事项:

你需要的仅仅是一些数字是否是质数的信息,你需要所有的质数达到一定的限度,还是你需要(潜在的)所有的质数? 你要处理的数字有多大?

米勒-拉宾和模拟测试只比筛选超过一定规模的数字(我相信大约在几百万左右)的速度快。在这以下,使用试除法(如果你只有几个数字)或筛子会更快。

如果它必须非常快,你可以包括一个质数列表: http://www.bigprimes.net/archive/prime/

如果你只想知道某个数是不是质数,维基百科上列出了各种质数判别法。它们可能是确定大数是否为质数的最快方法,特别是因为它们可以告诉你一个数是否为质数。

#include<iostream>
using namespace std;

void main()
{
    int num,i,j,prime;
    cout<<"Enter the upper limit :";
    cin>>num;

    cout<<"Prime numbers till "<<num<<" are :2, ";

    for(i=3;i<=num;i++)
    {
        prime=1;
        for(j=2;j<i;j++)
        {
            if(i%j==0)
            {
                prime=0;
                break;
            }
        }

        if(prime==1)
            cout<<i<<", ";

    }
}

我会让你决定这是不是最快的。

using System;
namespace PrimeNumbers
{

public static class Program
{
    static int primesCount = 0;


    public static void Main()
    {
        DateTime startingTime = DateTime.Now;

        RangePrime(1,1000000);   

        DateTime endingTime = DateTime.Now;

        TimeSpan span = endingTime - startingTime;

        Console.WriteLine("span = {0}", span.TotalSeconds);

    }


    public static void RangePrime(int start, int end)
    {
        for (int i = start; i != end+1; i++)
        {
            bool isPrime = IsPrime(i);
            if(isPrime)
            {
                primesCount++;
                Console.WriteLine("number = {0}", i);
            }
        }
        Console.WriteLine("primes count = {0}",primesCount);
    }



    public static bool IsPrime(int ToCheck)
    {

        if (ToCheck == 2) return true;
        if (ToCheck < 2) return false;


        if (IsOdd(ToCheck))
        {
            for (int i = 3; i <= (ToCheck / 3); i += 2)
            {
                if (ToCheck % i == 0) return false;
            }
            return true;
        }
        else return false; // even numbers(excluding 2) are composite
    }

    public static bool IsOdd(int ToCheck)
    {
        return ((ToCheck % 2 != 0) ? true : false);
    }
}
}

在我使用2.40 GHz处理器的酷睿2 Duo笔记本电脑上,查找并打印1到1,000,000范围内的质数大约需要82秒。它找到了78,498个质数。

一个非常快速的Atkin Sieve的实现是Dan Bernstein的primegen。这个筛子比埃拉托色尼的筛子更有效率。他的页面有一些基准测试信息。