这是运行脚本检查Tensorflow是否工作时收到的消息:

I tensorflow/stream_executor/dso_loader.cc:125] successfully opened CUDA library libcublas.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:125] successfully opened CUDA library libcudnn.so.5 locally
I tensorflow/stream_executor/dso_loader.cc:125] successfully opened CUDA library libcufft.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:125] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:125] successfully opened CUDA library libcurand.so.8.0 locally
W tensorflow/core/platform/cpu_feature_guard.cc:95] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:95] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:910] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero

我注意到它提到了SSE4.2和AVX,

什么是SSE4.2和AVX? 这些SSE4.2和AVX如何提高Tensorflow任务的CPU计算。 如何使用这两个库使Tensorflow编译?


当前回答

我编译了一个小型的Mac Bash脚本(很容易移植到Linux)来检索所有CPU特性,并应用其中的一些来构建TF。我在TF大师和使用有点经常(一对夫妇在一个月)。

https://gist.github.com/venik/9ba962c8b301b0e21f99884cbd35082f

其他回答

这是最简单的方法。只有一步。

它对速度有很大的影响。以我为例,每一步训练所花费的时间几乎减半。

请参考 tensorflow的自定义构建

这些是SIMD矢量处理指令集。

对于许多任务来说,使用矢量指令更快;机器学习就是这样一项任务。

引用tensorflow安装文档:

为了与尽可能多的机器兼容,TensorFlow默认只在x86机器上使用SSE4.1 SIMD指令。大多数现代pc和mac都支持更高级的指令,所以如果您正在构建一个只在您自己的机器上运行的二进制文件,您可以在bazel构建命令中使用——copt=-march=native来启用这些指令。

要隐藏这些警告,可以在实际代码之前执行此操作。

import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tf

使用SSE4.2和AVX编译TensorFlow,可以直接使用

Bazel build -config=mkl ——配置= "选择" ——科普特人=“3 = broadwell” ——科普特人= " o3 " / / tensorflow /工具/ pip_package: build_pip_package

来源: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/docker/Dockerfile.devel-cpu-mkl

多亏了所有这些回复和一些试验和错误,我成功地将它安装在Mac上。所以分享一下我的解,也许对别人有用。

请遵循文档-从源代码安装TensorFlow的说明 当提示 当bazel选项"——config=opt"被指定时,请指定在编译过程中使用的优化标志[默认值是-march=native]

然后复制粘贴这个字符串:

-mavx -mavx2 -mfma -msse4.2

(默认选项会导致错误,其他一些标志也是如此。我没有得到错误与上述标志。顺便说一句,我回答了n个其他问题)

安装后,我验证了在训练深度模型时,相对于基于默认轮子的另一个安装(在macOS上安装TensorFlow),速度提高了~2倍到2.5倍

希望能有所帮助