什么是甲状腺?它们用于什么?


当前回答

其他人已经解释了金属玻璃是如何工作的,它们是如何适应Python类型系统的,这里有一个例子,它们可以用于什么。在我写的测试框架中,我想跟踪在哪个类被定义的顺序,以便我后来能够在这个顺序中安装它们,我发现使用金属玻璃最容易做到这一点。

class MyMeta(type):

    counter = 0

    def __init__(cls, name, bases, dic):
        type.__init__(cls, name, bases, dic)
        cls._order = MyMeta.counter
        MyMeta.counter += 1

class MyType(object):              # Python 2
    __metaclass__ = MyMeta

class MyType(metaclass=MyMeta):    # Python 3
    pass

任何是 MyType 的子类,然后获得一个类属性 _ 命令,记录了类被定义的顺序。

其他回答

我看到一个有趣的使用案例在一个名为类用途的包中,它检查是否所有类变量在顶部案例格式(方便有统一逻辑的配置类),并检查是否没有例子级方法在课堂上。

类,在Python,是一个对象,和任何其他对象一样,它是一个例子“什么”。这个“什么”是所谓的MetaClass。这个MetaClass是一个特殊类型的类,创造了其他类的对象。因此,MetaClass负责创造新的类。

Class Name Tuple 具有由 Class A 继承的基类 词典具有所有类方法和类变量

另一种方式创建一个金属类是“金属类”的关键词,将金属类定义为一个简单的类,在继承类的参数中,通过金属类=金属类_名称。

Metaclass 可以在以下情况下具体使用:

简而言之:一类是创建一个例子的图标,一类是创建一个类的图标,可以很容易地看到,在Python类中,也需要第一类对象才能实现这种行为。

我从来没有自己写过一个,但我认为在Django框架中可以看到最可爱的用途之一。模型类使用一个模型类的方法,以允许写新的模型或形式类的宣言风格。

剩下的就是:如果你不知道什么是金属玻璃,那么你不需要它们的可能性是99%。

甲特克拉斯(甲特克拉斯)是一类,讲述了(某些)其他类应该是如何形成的。

这是一个案例,我看到甲状腺作为解决我的问题:我有一个真正复杂的问题,可能可以是不同的解决,但我选择用甲状腺解决它。 由于复杂性,这是我写的几个模块之一,在模块上的评论超过了编写的代码的数量。

#!/usr/bin/env python

# Copyright (C) 2013-2014 Craig Phillips.  All rights reserved.

# This requires some explaining.  The point of this metaclass excercise is to
# create a static abstract class that is in one way or another, dormant until
# queried.  I experimented with creating a singlton on import, but that did
# not quite behave how I wanted it to.  See now here, we are creating a class
# called GsyncOptions, that on import, will do nothing except state that its
# class creator is GsyncOptionsType.  This means, docopt doesn't parse any
# of the help document, nor does it start processing command line options.
# So importing this module becomes really efficient.  The complicated bit
# comes from requiring the GsyncOptions class to be static.  By that, I mean
# any property on it, may or may not exist, since they are not statically
# defined; so I can't simply just define the class with a whole bunch of
# properties that are @property @staticmethods.
#
# So here's how it works:
#
# Executing 'from libgsync.options import GsyncOptions' does nothing more
# than load up this module, define the Type and the Class and import them
# into the callers namespace.  Simple.
#
# Invoking 'GsyncOptions.debug' for the first time, or any other property
# causes the __metaclass__ __getattr__ method to be called, since the class
# is not instantiated as a class instance yet.  The __getattr__ method on
# the type then initialises the class (GsyncOptions) via the __initialiseClass
# method.  This is the first and only time the class will actually have its
# dictionary statically populated.  The docopt module is invoked to parse the
# usage document and generate command line options from it.  These are then
# paired with their defaults and what's in sys.argv.  After all that, we
# setup some dynamic properties that could not be defined by their name in
# the usage, before everything is then transplanted onto the actual class
# object (or static class GsyncOptions).
#
# Another piece of magic, is to allow command line options to be set in
# in their native form and be translated into argparse style properties.
#
# Finally, the GsyncListOptions class is actually where the options are
# stored.  This only acts as a mechanism for storing options as lists, to
# allow aggregation of duplicate options or options that can be specified
# multiple times.  The __getattr__ call hides this by default, returning the
# last item in a property's list.  However, if the entire list is required,
# calling the 'list()' method on the GsyncOptions class, returns a reference
# to the GsyncListOptions class, which contains all of the same properties
# but as lists and without the duplication of having them as both lists and
# static singlton values.
#
# So this actually means that GsyncOptions is actually a static proxy class...
#
# ...And all this is neatly hidden within a closure for safe keeping.
def GetGsyncOptionsType():
    class GsyncListOptions(object):
        __initialised = False

    class GsyncOptionsType(type):
        def __initialiseClass(cls):
            if GsyncListOptions._GsyncListOptions__initialised: return

            from docopt import docopt
            from libgsync.options import doc
            from libgsync import __version__

            options = docopt(
                doc.__doc__ % __version__,
                version = __version__,
                options_first = True
            )

            paths = options.pop('<path>', None)
            setattr(cls, "destination_path", paths.pop() if paths else None)
            setattr(cls, "source_paths", paths)
            setattr(cls, "options", options)

            for k, v in options.iteritems():
                setattr(cls, k, v)

            GsyncListOptions._GsyncListOptions__initialised = True

        def list(cls):
            return GsyncListOptions

        def __getattr__(cls, name):
            cls.__initialiseClass()
            return getattr(GsyncListOptions, name)[-1]

        def __setattr__(cls, name, value):
            # Substitut option names: --an-option-name for an_option_name
            import re
            name = re.sub(r'^__', "", re.sub(r'-', "_", name))
            listvalue = []

            # Ensure value is converted to a list type for GsyncListOptions
            if isinstance(value, list):
                if value:
                    listvalue = [] + value
                else:
                    listvalue = [ None ]
            else:
                listvalue = [ value ]

            type.__setattr__(GsyncListOptions, name, listvalue)

    # Cleanup this module to prevent tinkering.
    import sys
    module = sys.modules[__name__]
    del module.__dict__['GetGsyncOptionsType']

    return GsyncOptionsType

# Our singlton abstract proxy class.
class GsyncOptions(object):
    __metaclass__ = GetGsyncOptionsType()

在 Python 或任何其他语言中,我们对每个变量或对象都有一个类型. 在 Python 中,我们可以使用 Type() 函数来获得任何类型(变量、对象等)。

通过在课堂定义中的 meta 类关键词,我们可以自定义课堂创建过程。

class meta(type):
    pass
class baseclass(metaclass=meta): # This is Mestaclass
    pass
class derivedclass(baseclass):
    pass
print(type(meta))
print(type(baseclass))
print(type(derivedclass))

在定义新类时,如果没有定义的甲型,则使用默认类型甲型;如果一个甲型不是类型(例)的对象(例),则在这种情况下,它直接用作甲型。