什么是甲状腺?它们用于什么?
当前回答
看这:
Python 3.10.0rc2 (tags/v3.10.0rc2:839d789, Sep 7 2021, 18:51:45) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> class Object:
... pass
...
>>> class Meta(type):
... test = 'Worked!!!'
... def __repr__(self):
... return 'This is "Meta" metaclass'
...
>>> class ObjectWithMetaClass(metaclass=Meta):
... pass
...
>>> Object or type(Object())
<class '__main__.Object'>
>>> ObjectWithMetaClass or type(ObjectWithMetaClass())
This is "Meta" metaclass
>>> Object.test
AttributeError: ...
>>> ObjectWithMetaClass.test
'Worked!!!'
>>> type(Object)
<class 'type'>
>>> type(ObjectWithMetaClass)
<class '__main__.Meta'>
>>> type(type(ObjectWithMetaClass))
<class 'type'>
>>> Object.__bases__
(<class 'object'>,)
>>> ObjectWithMetaClass.__bases__
(<class 'object'>,)
>>> type(ObjectWithMetaClass).__bases__
(<class 'type'>,)
>>> Object.__mro__
(<class '__main__.Object'>, <class 'object'>)
>>> ObjectWithMetaClass.__mro__
(This is "Meta" metaclass, <class 'object'>)
>>>
换句话说,当一个对象没有创建(对象类型),我们正在寻找MetaClass。
其他回答
甲特克拉斯(甲特克拉斯)是一类,讲述了(某些)其他类应该是如何形成的。
这是一个案例,我看到甲状腺作为解决我的问题:我有一个真正复杂的问题,可能可以是不同的解决,但我选择用甲状腺解决它。 由于复杂性,这是我写的几个模块之一,在模块上的评论超过了编写的代码的数量。
#!/usr/bin/env python
# Copyright (C) 2013-2014 Craig Phillips. All rights reserved.
# This requires some explaining. The point of this metaclass excercise is to
# create a static abstract class that is in one way or another, dormant until
# queried. I experimented with creating a singlton on import, but that did
# not quite behave how I wanted it to. See now here, we are creating a class
# called GsyncOptions, that on import, will do nothing except state that its
# class creator is GsyncOptionsType. This means, docopt doesn't parse any
# of the help document, nor does it start processing command line options.
# So importing this module becomes really efficient. The complicated bit
# comes from requiring the GsyncOptions class to be static. By that, I mean
# any property on it, may or may not exist, since they are not statically
# defined; so I can't simply just define the class with a whole bunch of
# properties that are @property @staticmethods.
#
# So here's how it works:
#
# Executing 'from libgsync.options import GsyncOptions' does nothing more
# than load up this module, define the Type and the Class and import them
# into the callers namespace. Simple.
#
# Invoking 'GsyncOptions.debug' for the first time, or any other property
# causes the __metaclass__ __getattr__ method to be called, since the class
# is not instantiated as a class instance yet. The __getattr__ method on
# the type then initialises the class (GsyncOptions) via the __initialiseClass
# method. This is the first and only time the class will actually have its
# dictionary statically populated. The docopt module is invoked to parse the
# usage document and generate command line options from it. These are then
# paired with their defaults and what's in sys.argv. After all that, we
# setup some dynamic properties that could not be defined by their name in
# the usage, before everything is then transplanted onto the actual class
# object (or static class GsyncOptions).
#
# Another piece of magic, is to allow command line options to be set in
# in their native form and be translated into argparse style properties.
#
# Finally, the GsyncListOptions class is actually where the options are
# stored. This only acts as a mechanism for storing options as lists, to
# allow aggregation of duplicate options or options that can be specified
# multiple times. The __getattr__ call hides this by default, returning the
# last item in a property's list. However, if the entire list is required,
# calling the 'list()' method on the GsyncOptions class, returns a reference
# to the GsyncListOptions class, which contains all of the same properties
# but as lists and without the duplication of having them as both lists and
# static singlton values.
#
# So this actually means that GsyncOptions is actually a static proxy class...
#
# ...And all this is neatly hidden within a closure for safe keeping.
def GetGsyncOptionsType():
class GsyncListOptions(object):
__initialised = False
class GsyncOptionsType(type):
def __initialiseClass(cls):
if GsyncListOptions._GsyncListOptions__initialised: return
from docopt import docopt
from libgsync.options import doc
from libgsync import __version__
options = docopt(
doc.__doc__ % __version__,
version = __version__,
options_first = True
)
paths = options.pop('<path>', None)
setattr(cls, "destination_path", paths.pop() if paths else None)
setattr(cls, "source_paths", paths)
setattr(cls, "options", options)
for k, v in options.iteritems():
setattr(cls, k, v)
GsyncListOptions._GsyncListOptions__initialised = True
def list(cls):
return GsyncListOptions
def __getattr__(cls, name):
cls.__initialiseClass()
return getattr(GsyncListOptions, name)[-1]
def __setattr__(cls, name, value):
# Substitut option names: --an-option-name for an_option_name
import re
name = re.sub(r'^__', "", re.sub(r'-', "_", name))
listvalue = []
# Ensure value is converted to a list type for GsyncListOptions
if isinstance(value, list):
if value:
listvalue = [] + value
else:
listvalue = [ None ]
else:
listvalue = [ value ]
type.__setattr__(GsyncListOptions, name, listvalue)
# Cleanup this module to prevent tinkering.
import sys
module = sys.modules[__name__]
del module.__dict__['GetGsyncOptionsType']
return GsyncOptionsType
# Our singlton abstract proxy class.
class GsyncOptions(object):
__metaclass__ = GetGsyncOptionsType()
# define a class
class SomeClass(object):
# ...
# some definition here ...
# ...
# create an instance of it
instance = SomeClass()
# then call the object as if it's a function
result = instance('foo', 'bar')
class SomeClass(object):
# ...
# some definition here ...
# ...
def __call__(self, foo, bar):
return bar + foo
但是,正如我们从以前的答案中看到的那样,一个类本身就是一个金属类的例子,所以当我们使用这个类作为一个金属类(即当我们创建一个例子时),我们实际上称它为金属类的 __call__() 方法。
class Meta_1(type):
def __call__(cls):
print "Meta_1.__call__() before creating an instance of ", cls
instance = super(Meta_1, cls).__call__()
print "Meta_1.__call__() about to return instance."
return instance
这是一个使用这个MetaClass的班级。
class Class_1(object):
__metaclass__ = Meta_1
def __new__(cls):
print "Class_1.__new__() before creating an instance."
instance = super(Class_1, cls).__new__(cls)
print "Class_1.__new__() about to return instance."
return instance
def __init__(self):
print "entering Class_1.__init__() for instance initialization."
super(Class_1,self).__init__()
print "exiting Class_1.__init__()."
现在,让我们创建一个类_1的例子。
instance = Class_1()
# Meta_1.__call__() before creating an instance of <class '__main__.Class_1'>.
# Class_1.__new__() before creating an instance.
# Class_1.__new__() about to return instance.
# entering Class_1.__init__() for instance initialization.
# exiting Class_1.__init__().
# Meta_1.__call__() about to return instance.
class type:
def __call__(cls, *args, **kwarg):
# ... maybe a few things done to cls here
# then we call __new__() on the class to create an instance
instance = cls.__new__(cls, *args, **kwargs)
# ... maybe a few things done to the instance here
# then we initialize the instance with its __init__() method
instance.__init__(*args, **kwargs)
# ... maybe a few more things done to instance here
# then we return it
return instance
从上述情况下,它表明,MetaClass的 __call__() 还有机会决定是否会最终对 Class_1.__new__() 或 Class_1.__init__() 进行呼叫。在执行过程中,它实际上可以返回没有被这些方法触摸的对象。
class Meta_2(type):
singletons = {}
def __call__(cls, *args, **kwargs):
if cls in Meta_2.singletons:
# we return the only instance and skip a call to __new__()
# and __init__()
print ("{} singleton returning from Meta_2.__call__(), "
"skipping creation of new instance.".format(cls))
return Meta_2.singletons[cls]
# else if the singleton isn't present we proceed as usual
print "Meta_2.__call__() before creating an instance."
instance = super(Meta_2, cls).__call__(*args, **kwargs)
Meta_2.singletons[cls] = instance
print "Meta_2.__call__() returning new instance."
return instance
class Class_2(object):
__metaclass__ = Meta_2
def __new__(cls, *args, **kwargs):
print "Class_2.__new__() before creating instance."
instance = super(Class_2, cls).__new__(cls)
print "Class_2.__new__() returning instance."
return instance
def __init__(self, *args, **kwargs):
print "entering Class_2.__init__() for initialization."
super(Class_2, self).__init__()
print "exiting Class_2.__init__()."
让我们来看看在重复试图创建类型Class_2的对象时会发生什么。
a = Class_2()
# Meta_2.__call__() before creating an instance.
# Class_2.__new__() before creating instance.
# Class_2.__new__() returning instance.
# entering Class_2.__init__() for initialization.
# exiting Class_2.__init__().
# Meta_2.__call__() returning new instance.
b = Class_2()
# <class '__main__.Class_2'> singleton returning from Meta_2.__call__(), skipping creation of new instance.
c = Class_2()
# <class '__main__.Class_2'> singleton returning from Meta_2.__call__(), skipping creation of new instance.
a is b is c # True
类,在Python,是一个对象,和任何其他对象一样,它是一个例子“什么”。这个“什么”是所谓的MetaClass。这个MetaClass是一个特殊类型的类,创造了其他类的对象。因此,MetaClass负责创造新的类。
Class Name Tuple 具有由 Class A 继承的基类 词典具有所有类方法和类变量
另一种方式创建一个金属类是“金属类”的关键词,将金属类定义为一个简单的类,在继承类的参数中,通过金属类=金属类_名称。
Metaclass 可以在以下情况下具体使用:
请注意,在Python 3.6中,引入了一个新的Dunder方法 __init_subclass__(cls, **kwargs),以取代许多常见的使用案例为MetaClass。
>>> class ObjectCreator(object):
... pass
>>> my_object = ObjectCreator()
>>> print(my_object)
<__main__.ObjectCreator object at 0x8974f2c>
>>> class ObjectCreator(object):
... pass
>>> print(JustAnotherVariable)
<class '__main__.ObjectCreator'>
>>> print(JustAnotherVariable())
<__main__.ObjectCreator object at 0x8997b4c>
>>> def choose_class(name):
... if name == 'foo':
... class Foo(object):
... pass
... return Foo # return the class, not an instance
... else:
... class Bar(object):
... pass
... return Bar
...
>>> MyClass = choose_class('foo')
>>> print(MyClass) # the function returns a class, not an instance
<class '__main__.Foo'>
>>> print(MyClass()) # you can create an object from this class
<__main__.Foo object at 0x89c6d4c>
>>> print(type(1))
<type 'int'>
>>> print(type("1"))
<type 'str'>
>>> print(type(ObjectCreator))
<type 'type'>
>>> print(type(ObjectCreator()))
<class '__main__.ObjectCreator'>
type(name, bases, attrs)
>>> class MyShinyClass(object):
... pass
>>> MyShinyClass = type('MyShinyClass', (), {}) # returns a class object
>>> print(MyShinyClass)
<class '__main__.MyShinyClass'>
>>> print(MyShinyClass()) # create an instance with the class
<__main__.MyShinyClass object at 0x8997cec>
>>> class Foo(object):
... bar = True
>>> Foo = type('Foo', (), {'bar':True})
>>> print(Foo)
<class '__main__.Foo'>
>>> print(Foo.bar)
True
>>> f = Foo()
>>> print(f)
<__main__.Foo object at 0x8a9b84c>
>>> print(f.bar)
True
>>> class FooChild(Foo):
... pass
>>> FooChild = type('FooChild', (Foo,), {})
>>> print(FooChild)
<class '__main__.FooChild'>
>>> print(FooChild.bar) # bar is inherited from Foo
True
>>> def echo_bar(self):
... print(self.bar)
...
>>> FooChild = type('FooChild', (Foo,), {'echo_bar': echo_bar})
>>> hasattr(Foo, 'echo_bar')
False
>>> hasattr(FooChild, 'echo_bar')
True
>>> my_foo = FooChild()
>>> my_foo.echo_bar()
True
>>> def echo_bar_more(self):
... print('yet another method')
...
>>> FooChild.echo_bar_more = echo_bar_more
>>> hasattr(FooChild, 'echo_bar_more')
True
MyClass = MetaClass()
my_object = MyClass()
MyClass = type('MyClass', (), {})
>>> age = 35
>>> age.__class__
<type 'int'>
>>> name = 'bob'
>>> name.__class__
<type 'str'>
>>> def foo(): pass
>>> foo.__class__
<type 'function'>
>>> class Bar(object): pass
>>> b = Bar()
>>> b.__class__
<class '__main__.Bar'>
>>> age.__class__.__class__
<type 'type'>
>>> name.__class__.__class__
<type 'type'>
>>> foo.__class__.__class__
<type 'type'>
>>> b.__class__.__class__
<type 'type'>
class Foo(object):
__metaclass__ = something...
[...]
class Foo(Bar):
pass
设置 meta 类的合成已在 Python 3 中更改:
class Foo(object, metaclass=something):
...
class Foo(object, metaclass=something, kwarg1=value1, kwarg2=value2):
...
# the metaclass will automatically get passed the same argument
# that you usually pass to `type`
def upper_attr(future_class_name, future_class_parents, future_class_attrs):
"""
Return a class object, with the list of its attribute turned
into uppercase.
"""
# pick up any attribute that doesn't start with '__' and uppercase it
uppercase_attrs = {
attr if attr.startswith("__") else attr.upper(): v
for attr, v in future_class_attrs.items()
}
# let `type` do the class creation
return type(future_class_name, future_class_parents, uppercase_attrs)
__metaclass__ = upper_attr # this will affect all classes in the module
class Foo(): # global __metaclass__ won't work with "object" though
# but we can define __metaclass__ here instead to affect only this class
# and this will work with "object" children
bar = 'bip'
>>> hasattr(Foo, 'bar')
False
>>> hasattr(Foo, 'BAR')
True
>>> Foo.BAR
'bip'
# remember that `type` is actually a class like `str` and `int`
# so you can inherit from it
class UpperAttrMetaclass(type):
# __new__ is the method called before __init__
# it's the method that creates the object and returns it
# while __init__ just initializes the object passed as parameter
# you rarely use __new__, except when you want to control how the object
# is created.
# here the created object is the class, and we want to customize it
# so we override __new__
# you can do some stuff in __init__ too if you wish
# some advanced use involves overriding __call__ as well, but we won't
# see this
def __new__(upperattr_metaclass, future_class_name,
future_class_parents, future_class_attrs):
uppercase_attrs = {
attr if attr.startswith("__") else attr.upper(): v
for attr, v in future_class_attrs.items()
}
return type(future_class_name, future_class_parents, uppercase_attrs)
class UpperAttrMetaclass(type):
def __new__(cls, clsname, bases, attrs):
uppercase_attrs = {
attr if attr.startswith("__") else attr.upper(): v
for attr, v in attrs.items()
}
return type(clsname, bases, uppercase_attrs)
class UpperAttrMetaclass(type):
def __new__(cls, clsname, bases, attrs):
uppercase_attrs = {
attr if attr.startswith("__") else attr.upper(): v
for attr, v in attrs.items()
}
return type.__new__(cls, clsname, bases, uppercase_attrs)
class UpperAttrMetaclass(type):
def __new__(cls, clsname, bases, attrs):
uppercase_attrs = {
attr if attr.startswith("__") else attr.upper(): v
for attr, v in attrs.items()
}
# Python 2 requires passing arguments to super:
return super(UpperAttrMetaclass, cls).__new__(
cls, clsname, bases, uppercase_attrs)
# Python 3 can use no-arg super() which infers them:
return super().__new__(cls, clsname, bases, uppercase_attrs)
class Foo(object, metaclass=MyMetaclass, kwarg1=value1):
...
class MyMetaclass(type):
def __new__(cls, clsname, bases, dct, kwargs1=default):
...
使用金属玻璃代码的复杂性背后的原因不是由于金属玻璃,而是因为你通常使用金属玻璃来制作依赖于入观、操纵遗产、如 __dict__ 等的旋转物品。
有几个理由这样做:
為什麼要使用MetaClass?
现在,大问题:为什么你会使用一些模糊的错误漏洞功能?
如果你想知道你是否需要它们,你不会(真正需要它们的人肯定知道他们需要它们,不需要解释为什么)。
Python Guru 蒂姆·彼得斯
class Person(models.Model):
name = models.CharField(max_length=30)
age = models.IntegerField()
person = Person(name='bob', age='35')
print(person.age)
最后一句话
首先,你知道,类是可以创造例子的物体。
>>> class Foo(object): pass
>>> id(Foo)
142630324
99%的时间你需要课堂变化,你更好地使用这些。
但98%的时间,你根本不需要课堂变化。
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录